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Motivation - Given: Multivariate data streams
e.g., Spread of infectious diseases,
e.g., coronavirus (COVID-19)
Challenges
How can we discover time-changing
causal relationships?
Given: Multivariate Data stream
Given: i.e., 𝑿 = {𝒙 1 ,… , 𝒙 𝑡! , … }
Goal: Achieve all of the followings
• Find distinct dynamical patterns / regimes
• Discover causal relationships, which changes

Discover over time / time-evolving causality
• Forecast an 𝑙!-steps ahead future values

ModePlait: novel streamimg methoda
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Optimization algorithm                              
Given:
- Multivariate data Stream 𝑿
Estimate:
- Full parameter set 

- Model candidate 

- Time evolving causality

- 𝑙!-steps ahead future value

Conclusion - ModePlait has following properties: 
Effective: it discovers time-evolving causality
General: it is adaptable to various real-world datasets
Scalable: it does not depend on stream length

Future work - Enhancing our proposed model: 
Causal discovery evaluation: we plan to use synthetic 
datasets generated from Erdös-Rényi (ER) model [Erdös 
and Rényi 1960] for quantitative evaluation.
Multi-task optimization: we optimize multiple tasks 
(i.e., causal discovery and time series forecasting) while 
considering the mutual dependencies between them.
Other downstream tasks: we detect anomalous 
activities based on time-evolving causality in data streams.

Stream Mining Time-evolving Causality in Time Series
ACM SIGKDD 2024 PhD Consortium Submission ID No. 9

Experiments - Answer the essential questions 
Datasets: we used the following four real datasets

 

 

  ModePlait outperforms its competitors

Proposed Model - ModePlait                    
Key Concepts - Our model is designed based on SEM
Exogenous variables evolve over time / inherent signals

 

Main idea (P1): Latent temporal dynamics        
E  Each inherent signal 𝑒 " (𝑡) is only a single dimension 
⇒ superposition of computed basis vectors (i.e., modes) 

Main idea (P2): Dynamical patterns                
Describe distinct dynamical pattern (i.e., regime) 
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

/ self-dynamics factor set
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L���� 1 (T��� ���������� �� R�����C�������). The time
complexity of R�����C������� is $ (# (32 + ⌘2) + :3), where : =
max8 (:8 ). Please see Appendix B for details.

4.2 Proposed streaming algorithm
Our next step is to answer the most important question: how can
we employ our proposed model for identifying the causal adjacency
matrix H from the demixing matrix] 2 ) and forecasting future
values in a streaming fashion? Before turning to the main topic, we
provide the de�nitions of some key concepts.

D��������� 6 (U����� ���������: 8). Let 8 be a parameter
set for updating a regime \ , i.e., 8 = {{V(8 ) }38=1, {& (8 ) }38=1}, where
V(8 ) = (X (8 )SX>

(8 ) )
�1 and & (8 ) is the energy.

D��������� 7 (F��� ��������� ���: F ). Let F be a full pa-
rameter set of M���P����, i.e., F = {⇥,⌦}, where ⇥ and ⌦ con-
sist of ' regimes and update parameters, respectively, namely, ⇥ =
{) 1, ..., )'}, and ⌦ = {81, ...,8'}.
With the above de�nitions, the formal problem is as follows:

P������ 1. Given a multivariate data stream ^ , where x (C2 ) is
the most recent value at time point C2 ,

• Find the optimal full parameter set, i.e., F = {⇥,⌦},
• Discover the time-evolving causality, i.e., B,
• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),

Here, we refer to the regime for the current window ^2 = ^ [C< :
C2 ] as )2 , and the update parameter corresponding to )2 as 82 . In
addition, we need the latent vectors Y (C2 ) at the current time C2 for
forecasting an ;B -steps-ahead future value v (C2 + ;B ), and so keep
it as Y24= . In summary, our proposed algorithm keeps them as the
model candidate C = {)2 ,82 , Y24=} for stream processing.

4.2.1 Overview. We now introduce our streaming algorithm,M���
�P����, which consists of the following algorithms.
• M���E��������: Estimates the optimal full parameter set F

and the model candidate C.
• M���G��������: Forecasts an ;B -steps-ahead future value, i.e.,

v (C2 + ;B ), and identi�es the causal adjacency matrix H, using
the model candidate C.

• R�����U������: Updates the current regime )2 using update
parameter 82 and the most recent value x (C2 ).

Algorithm 1 (See Appendix B) provides an overview of M���P����.
Given a new value x (C2 ) at the current time C2 , it updates the full
parameter set F and the model candidate C by usingM���E������
���. Next, it generates an ;B -steps-ahead future value v (C2 + ;B ) and
the causal adjacency matrix H from the demixing matrix] 2 )2

usingM���G��������. Finally, if a new regime is not created, it
also updates the model candidate C with a new value x (C2 ).
4.2.2 M���E��������. Given a new value x (C2 ) at the current time
C2 , we �rst need to update the full parameter set F incrementally
and the model candidate C, which best describes the current win-
dow^2 . Algorithm 2 (See Appendix B) is theM���E�������� algo-
rithm in detail. Here, let 5 (^2 ; Y20, )

2 ) be a new function for estimat-
ing the optimal parameter so that it minimizes the mean square er-
rors between the current window ^2 and the estimated window \2

in Model 2, i.e., 5 (^2 ; Y20, )
2 ) = ÕC2

C=C<+⌘�1 | |x (C)�v (C) | |, where Y
2
0

represents the latent vectors at time point C< +⌘�1. Note that when
embedding the time series using g(·), the number of data points
(namely, the number of columns in the Hankel matrixN ) is partially
reduced compared with before embedding. The most straightfor-
ward way to determine Y20 is to adopt {�†

(8 )g(4 (8 ) (C< + ⌘ � 1))}38=1
according to Eq. (3). However, the noisy initial conditions give rise
to unexpected forecasting. Therefore, we optimize Y20 by using the
Levenberg-Marquardt (LM) algorithm [42] and thus enable the ef-
fects of noise in observations to be removed. Here, we return to the
M���E�������� algorithm, which proceeds as follows:
I. It optimizes initial condition Y20 , so that it minimizes the errors

between the current window ^2 and the current regime )2 .
II. If 5 (^2 ; Y20, )

2 ) > g , it searches for a better regime ) 2 ⇥.
III. If 5 (^2 ; Y20, )

2 ) > g still holds, it creates a new regime for ^2

using R�����C�������, and inserts it into ⇥.

4.2.3 M���G��������. The next algorithm is M���G��������,
which incrementally forecasts an ;B -steps-ahead future value v (C2 +
;B ) and identi�es the causal adjacency matrix H by using the model
candidate C. As for forecasting, it generates the value of v (C2 + ;B )
according to Eq. (3) with the most suitable regime )2 for ^2 , which
is selected by M���E��������. On the other hand, we identify
the causal adjacency matrix H from the demixing matrix] 2 )2 .
A mixing matrix (i.e., the inverse of a demixing matrix) typically
has the two major indeterminacies: the order and scaling of the
independent components; however, we must address the above
di�culties if we are to identify the optimal causal adjacency ma-
trix. The algorithm for resolving the above indeterminacies and
identifying the causal adjacency matrix H proceeds as follows:
I. Find the permutation of rows of ] that yields a matrix ]̃

without any zeros on the main diagonal.
II. Divide each row of ]̃ by its corresponding diagonal element

to yield a new matrix ]̃ 0 with all ones on the diagonal.
III. Compute an estimate Ĥ of H using Ĥ = O � ]̃ 0.
IV. Finally, to �nd a causal order, compute the permutation matrix

Q of Ĥ that yields a matrix H̃ = QĤQ>, which minimizes the
sum of the elements in the upper triangular part of H̃.

This algorithm resolves two major indeterminacies in a mixing
matrix in steps I and II. Moreover, it �nds the causal order, in other
words, it removes the insu�cient connection in step IV. The causal
relationships are already identi�ed up to step III, but this step is
important for visualizing the resulting directed acyclic graph.

L���� 2 (C����� ���������������). Causal discovery in M���
�P���� is equivalent to �nding the causal adjacency matrix H in
M���G��������. Please see Appendix B for details.

This lemma demonstrates theoretically that our proposed algorithm
is capable of discovering causal relationships.

4.2.4 R�����U������. Finally, when an existing regime is selected
as the current regime )2 from the regime set ⇥, we update its pa-
rameters (i.e.,] ,D(1) , ...,D(3 ) ) using a new value x (C2 ) to ensure
that this regime represents a more sophisticated dynamical pattern.
In short, R�����U������ has two parts: (i) update the demixing ma-
trix] and (ii) update each self-dynamics factor setD(8 ) . In part (i),
we use an algorithm based on adaptive �ltering techniques [26, 60].
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [16] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [15, 34, 46, 52]. TICC [25] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 24, 30, 39]. OrbitMap [40] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [35, 44, 50, 62, 65]. TimesNet [59] is a
TCN-based method that transforms a 1D time series into 2D space
based on multiple periods and captures complex temporal varia-
tions for forecasting. Although deep learning-based methods are
compelling, their applicability to forecasting in a streaming fashion
is limited due to the prohibitively high computational costs asso-
ciated with time series analysis, which hinders continuous model
updating with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [20, 27, 28,
36, 53] and addressing challenges based on the concept of causal-
ity [13, 37, 49, 58]. NOTEARS [63] is a new di�erentiable optimiza-
tion framework with an acyclic regularization term, serving as an
equivalent to a combinatorial constraint. Granger causality [22]
has been widely used to analyze temporal causal relationships.
Speci�cally, typical causality represents whether one observation
causes another, while Granger causality represents whether one
observation forecasts another [23]. In this paper, we focus on the
cause-and-e�ect relationships that evolve over time in a data stream.
We try to discover them based on the structural equationmodel [47],
which is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we
use in this paper are described in Appendix A. Here, before in-
troducing the main topic, we brie�y describe the principles and
concepts of M���P����. We design our proposed model based
on the structural equation model (SEM) [47], which is written as
^sem = Hsem^sem + Ksem, where ^sem is the observed variables,
Hsem is the causal adjacency matrix, and Ksem is a set of mutually
independent exogenous variables with a non-Gaussian distribution.
Note that we assume that the data generating process is linear, the
causal network is a directed acyclic graph, and there are no unob-
served confounders in this paper. The structural equation model
can express a typical causality, however, in real-world applications,
causal relationships change over time in accordance with the tran-
sitions of distinct dynamical patterns. In our model, we assume that
the exogenous variables behave as a dynamical system; however, it
is inappropriate to consider their evolution as a single dynamical
system due to their independence from each other.

In summary, given an multivariate data stream, which contains
various distinct dynamical patterns (i.e., regimes), we aim to sum-
marize those streams and discover the time-evolving causality in a
streaming fashion on the above assumption. Speci�cally, we need
to capture the following properties to achieve the above objective:
(P1) latent temporal dynamics of exogenous variables
(P2) dynamical pattern in a single regime

So, how can we build our model that expresses both (P1) and (P2)?
What is the acceptable mathematical model that summarizes a data
stream and discovers the time-evolving causality? To handle (P1),
we express each of the exogenous variables as the superposition of
computed basis vectors (i.e., modes). We model (P2) by combining
the above components. We provide detailed answers below.

3.1 Proposed solution:M���P����
We now present our model in detail. First, we provide the de�nition
for our proposed method.

D��������� 1 (I������� �������: K ). Let K be a bundle of 3
mutually independent signals with a non-Gaussian distribution, i.e.,
K = {e (8 ) }38=1, where e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)} is the 8-th univariate
inherent signal. The main property is that they evolve over time.

Figure 2 is an overview of our proposed model. In the �rst half
of this section, we describe (P1) the latent temporal dynamics of
the 8-th univariate inherent signal e (8 ) by introducing the self-
dynamics factor set D(8 ) , and next, we propose the parameter set
) to represent (P2) regimes and an entire data stream.

3.1.1 Latent temporal dynamics of an inherent signal (P1). First,
we answer the fundamental question, namely, how can we extract
the latent temporal dynamics from the 8-th inherent signal (i.e.,
e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)}) and express it as a superposition of the
modes? The di�culty arises from the fact that the latent dynamics
in the system are generally multi-dimensional, making a single
dimension inadequate for modeling the system. Here, we utilize
state space augmentation methods to compensate for this inade-
quacy. In particular, we adopt time-delay embedding, which are
e�ective in capturing non-linear dynamics. Speci�cally, this is an
established method for the geometric reconstruction of attractors

3
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2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [16] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [15, 34, 46, 52]. TICC [25] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 24, 30, 39]. OrbitMap [40] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [35, 44, 50, 62, 65]. TimesNet [59] is a
TCN-based method that transforms a 1D time series into 2D space
based on multiple periods and captures complex temporal varia-
tions for forecasting. Although deep learning-based methods are
compelling, their applicability to forecasting in a streaming fashion
is limited due to the prohibitively high computational costs asso-
ciated with time series analysis, which hinders continuous model
updating with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [20, 27, 28,
36, 53] and addressing challenges based on the concept of causal-
ity [13, 37, 49, 58]. NOTEARS [63] is a new di�erentiable optimiza-
tion framework with an acyclic regularization term, serving as an
equivalent to a combinatorial constraint. Granger causality [22]
has been widely used to analyze temporal causal relationships.
Speci�cally, typical causality represents whether one observation
causes another, while Granger causality represents whether one
observation forecasts another [23]. In this paper, we focus on the
cause-and-e�ect relationships that evolve over time in a data stream.
We try to discover them based on the structural equationmodel [47],
which is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we
use in this paper are described in Appendix A. Here, before in-
troducing the main topic, we brie�y describe the principles and
concepts of M���P����. We design our proposed model based
on the structural equation model (SEM) [47], which is written as
^sem = Hsem^sem + Ksem, where ^sem is the observed variables,
Hsem is the causal adjacency matrix, and Ksem is a set of mutually
independent exogenous variables with a non-Gaussian distribution.
Note that we assume that the data generating process is linear, the
causal network is a directed acyclic graph, and there are no unob-
served confounders in this paper. The structural equation model
can express a typical causality, however, in real-world applications,
causal relationships change over time in accordance with the tran-
sitions of distinct dynamical patterns. In our model, we assume that
the exogenous variables behave as a dynamical system; however, it
is inappropriate to consider their evolution as a single dynamical
system due to their independence from each other.

In summary, given an multivariate data stream, which contains
various distinct dynamical patterns (i.e., regimes), we aim to sum-
marize those streams and discover the time-evolving causality in a
streaming fashion on the above assumption. Speci�cally, we need
to capture the following properties to achieve the above objective:
(P1) latent temporal dynamics of exogenous variables
(P2) dynamical pattern in a single regime

So, how can we build our model that expresses both (P1) and (P2)?
What is the acceptable mathematical model that summarizes a data
stream and discovers the time-evolving causality? To handle (P1),
we express each of the exogenous variables as the superposition of
computed basis vectors (i.e., modes). We model (P2) by combining
the above components. We provide detailed answers below.

3.1 Proposed solution:M���P����
We now present our model in detail. First, we provide the de�nition
for our proposed method.

D��������� 1 (I������� �������: K ). Let K be a bundle of 3
mutually independent signals with a non-Gaussian distribution, i.e.,
K = {e (8 ) }38=1, where e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)} is the 8-th univariate
inherent signal. The main property is that they evolve over time.

Figure 2 is an overview of our proposed model. In the �rst half
of this section, we describe (P1) the latent temporal dynamics of
the 8-th univariate inherent signal e (8 ) by introducing the self-
dynamics factor set D(8 ) , and next, we propose the parameter set
) to represent (P2) regimes and an entire data stream.

3.1.1 Latent temporal dynamics of an inherent signal (P1). First,
we answer the fundamental question, namely, how can we extract
the latent temporal dynamics from the 8-th inherent signal (i.e.,
e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)}) and express it as a superposition of the
modes? The di�culty arises from the fact that the latent dynamics
in the system are generally multi-dimensional, making a single
dimension inadequate for modeling the system. Here, we utilize
state space augmentation methods to compensate for this inade-
quacy. In particular, we adopt time-delay embedding, which are
e�ective in capturing non-linear dynamics. Speci�cally, this is an
established method for the geometric reconstruction of attractors
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Modeling Time-evolving Causality over Data Streams KDD ’25, August 3–7, 2025, Toronto, Canada

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b-ii) Time-evolving causality
(b) Snapshots taken on May 19, 2022

Figure 1: Modeling power of M���P���� over an epidemio-
logical data stream (i.e., #1 covid19) on January 8, 2021 (top)
and May 19, 2022 (bottom)

Next, we provide the overview of our streaming optimization
algorithm. Given a new value x(C2 ) at the current time C2 , it updates
the full parameter set F and the model candidate C, where the
full parameter set F is the digest of the whole data stream and the
model candidate C is the parameter set of the current regime. If any
regime in full parameter set F is not good, it creates a new regime.
Next, it generates predictive future values and the causal adjacency
matrix according to the model candidate C. Finally, if a new regime
is not created, it also updates the model candidate C with a new
value x(C2 ) to re�ect the latest information into a model.

3 EXPERIMENTS
In this section, we evaluate the performance of M���P���� using
the real datasets. We answer the following questions.
Q1. E�ectiveness: How well does it extract dynamical patterns?
Q2. Accuracy: How accurately does it forecast future values?
Q3. Scalability: How does it scale in terms of computational time?
Datasets & experimental setup. We used four real datasets re-
lated to epidemiology, web activity, and human movement.
• (#1) covid19: was obtained fromGoogle COVID-19OpenData [9].
• (#2) web-search: consists of web-search counts on Google [10].
• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [4].

We compared our algorithm with the following baselines for fore-
casting, including TimesNet [26], PatchTST [20], DeepAR [22], Or-
bitMap [17], and ARIMA [2].
Q1. E�ectiveness.We �rst demonstrated how e�ectivelyM����
P���� discovers the time-evolving causalities and forecasts future
values using the epidemiological data stream (i.e., #1 covid19). Fig-
ures 1 (a/b-i) show stream forecasting results. M���P���� adap-
tively captures the exponential rising patterns and forecasts future
values close to the originals. Figures 1 (a/b-ii) show graphical rep-
resentations of the causal adjacency matrix B. Most importantly,
the causal relationships evolve over time in proportion to the evo-
lution of the exogenous variables. M���P���� can continuously

Figure 2: Accuracy score:M���P���� is consistently superior
to its competitors (lower is better).

Figure 3: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis is a logarithmic scale.

and promptly detect new actual causative events around the world
(e.g., the discovery of the new coronavirus in South Africa and the
strict lockdown in Shanghai [3, 7]).
Q2. Accuracy. We next evaluated the quality of M���P���� in
terms of ;B -steps-ahead forecasting accuracy. Figure 2 shows the
overall results. Our method achieved a high forecasting accuracy
for every dataset compared with the competitors. While deep learn-
ing models exhibit high generality for time series modeling; they
reduced the forecasting accuracy because they could not adjust
model parameters incrementally. OrbitMap is capable of handling
multiple discrete non-linear dynamics but misses the time-evolving
causalities, so our method outperformed it.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 3 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computation time at each time point C2 on the left, and the
average on the right. Note that both �gures are shown in linear-log
scales. Our method consistently outperformed its competitors in
terms of computation time thanks to our incremental update.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented M���P����, which discovers the time-
evolving causalities in a co-evolving data stream and forecasts fu-
ture values. Additionally, it is adaptable to various types of datasets
and very large sequences without depending on the length of data
streams. In future work, we will quantitatively evaluate that M���
�P���� can discover the time-evolving causalities using synthetic
datasets. In details, we are plan to generate synthetic datasets with
acyclic causal structures according to the the Erdos-Renyi model [6],
varying the number of variables to test multiple scenarios.

KDD ’24, August 25–29, 2024, Barcelona, Spain Chihara, et al.

(a-i) ;B -steps-ahead future

IT

JP US

ZA

CN

(a-ii) Time-evolving causality
(a) Snapshot taken on January 8, 2021

(b-i) ;B -steps-ahead future

IT

JP US

ZA

CN

(b-ii) Time-evolving causality
(b) Snapshots taken on May 19, 2022

Figure 1: Modeling power of M���P���� over an epidemio-
logical data stream (i.e., #1 covid19) on January 8, 2021 (top)
and May 19, 2022 (bottom)

Next, we provide the overview of our streaming optimization
algorithm. Given a new value x(C2 ) at the current time C2 , it updates
the full parameter set F and the model candidate C, where the
full parameter set F is the digest of the whole data stream and the
model candidate C is the parameter set of the current regime. If any
regime in full parameter set F is not good, it creates a new regime.
Next, it generates predictive future values and the causal adjacency
matrix according to the model candidate C. Finally, if a new regime
is not created, it also updates the model candidate C with a new
value x(C2 ) to re�ect the latest information into a model.

3 EXPERIMENTS
In this section, we evaluate the performance of M���P���� using
the real datasets. We answer the following questions.
Q1. E�ectiveness: How well does it extract dynamical patterns?
Q2. Accuracy: How accurately does it forecast future values?
Q3. Scalability: How does it scale in terms of computational time?
Datasets & experimental setup. We used four real datasets re-
lated to epidemiology, web activity, and human movement.
• (#1) covid19: was obtained fromGoogle COVID-19OpenData [9].
• (#2) web-search: consists of web-search counts on Google [10].
• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [4].

We compared our algorithm with the following baselines for fore-
casting, including TimesNet [26], PatchTST [20], DeepAR [22], Or-
bitMap [17], and ARIMA [2].
Q1. E�ectiveness.We �rst demonstrated how e�ectivelyM����
P���� discovers the time-evolving causalities and forecasts future
values using the epidemiological data stream (i.e., #1 covid19). Fig-
ures 1 (a/b-i) show stream forecasting results. M���P���� adap-
tively captures the exponential rising patterns and forecasts future
values close to the originals. Figures 1 (a/b-ii) show graphical rep-
resentations of the causal adjacency matrix B. Most importantly,
the causal relationships evolve over time in proportion to the evo-
lution of the exogenous variables. M���P���� can continuously

Figure 2: Accuracy score:M���P���� is consistently superior
to its competitors (lower is better).

Figure 3: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis is a logarithmic scale.

and promptly detect new actual causative events around the world
(e.g., the discovery of the new coronavirus in South Africa and the
strict lockdown in Shanghai [3, 7]).
Q2. Accuracy. We next evaluated the quality of M���P���� in
terms of ;B -steps-ahead forecasting accuracy. Figure 2 shows the
overall results. Our method achieved a high forecasting accuracy
for every dataset compared with the competitors. While deep learn-
ing models exhibit high generality for time series modeling; they
reduced the forecasting accuracy because they could not adjust
model parameters incrementally. OrbitMap is capable of handling
multiple discrete non-linear dynamics but misses the time-evolving
causalities, so our method outperformed it.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 3 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computation time at each time point C2 on the left, and the
average on the right. Note that both �gures are shown in linear-log
scales. Our method consistently outperformed its competitors in
terms of computation time thanks to our incremental update.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented M���P����, which discovers the time-
evolving causalities in a co-evolving data stream and forecasts fu-
ture values. Additionally, it is adaptable to various types of datasets
and very large sequences without depending on the length of data
streams. In future work, we will quantitatively evaluate that M���
�P���� can discover the time-evolving causalities using synthetic
datasets. In details, we are plan to generate synthetic datasets with
acyclic causal structures according to the the Erdos-Renyi model [6],
varying the number of variables to test multiple scenarios.
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(a) Snapshots at current time point C2 = 208.
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(b) Snapshots at current time point C2 = 443.

Figure 5: M���P���� modeling for a web-click activity stream related to beer query sets (i.e., #2 web-search). Two sets of
snapshots taken at two di�erent time points show: (a/b-i) the current window of the original data stream, (a/b-ii) independent
signals K speci�c to each observation; (a/b-iii) causal relationships H 2 B and (a/b-iv) interpretable latent dynamics ⇤, where
the argument and the absolute value of each point correspond to the temporal frequency and decay rate of modes, respectively.

Baselines. The details of the baselines we used our throughout
extensive experiments are summarized as follows:
(1) Causal discovering methods

• CASPER [36]: is a state-of-the-art method for causal discov-
ery, integrating the graph structure into the score function
and re�ecting the causal distance between estimated and
ground truth causal structure. We tuned the parameters by
following the original paper setting.

• DARING [27]: introduces an adversarial learning strategy
to impose an explicit residual independence constraint. We
searched for three types of regularization penalties {U, V,W} 2
{0.001, 0.01, 0.1, 1.0, 10}.

• NoCurl [61]: utilizes a two-step procedure: initialize a cyclic
solution �rst and then employ the Hodge decomposition
of graphs. We set the optimal parameter presented in the
original paper.

• NOTEARS-MLP [64]: is an extension of NOTEARS [63] (men-
tioned below) for nonlinear settings, which aims to approxi-
mate the generative structural equation model by MLP. We
used the default parameters provided in authors’ codes2.

• NOTEARS [63]: is a di�erentiable optimization framework
with an acyclic regularization term to estimate a true causal
adjacency matrix. We used the default parameters provided
in authors’ codes2.

• LiNGAM [53]: exploits the non-Gaussianity of data to deter-
mine the direction of causal relationships. It has no parame-
ters to set.

• GES [10]: is a traditional score-based bayesian algorithm that
discovers causal relationships in a greedy manner. It has no
parameters to set. We employed BIC as the score function
and utilized the open-source in [29].

2https://github.com/xunzheng/notears

(2) Time series forecasting methods
• TimesNet/PatchTST [44, 59]: are state-of-the-art TCN-based

and Transformer-based methods, respectively. The past se-
quence length was set as 16 (to match the current window
length). Other parameters followed the original paper setting.

• DeepAR [50]: models probabilistic distribution in the future,
based on RNN. We built the model with 2-layer 64-unit RNNs.
We used Adam optimization [32] with a learning rate of 0.01
and let it learn for 20 epochs with early stopping.

• OrbitMap [40]: is a stream forecasting algorithm that �nds
important time-evolving patterns with multiple discrete non-
linear dynamical systems. We determined the optimal transi-
tion strength d to minimize the forecasting error in training.

• ARIMA [7]: is one of the traditional time series forecasting
approaches based on linear equations. We determined the
optimal parameter set using AIC.

C.2 E�ectiveness
Here, we show another result of M���P����. Figure 5 shows that
M���P���� achieves the successful modeling for a web-click activ-
ity stream (i.e., #2 web-search). Figure 5 (a/b-i) shows the original
data stream. Figure 5 (a/b-ii) shows the current inherent signals
K2 , with each signal speci�c to the corresponding keywords. Fig-
ure 5 (a/b-iii) shows the causal relationships between keywords,
which change over time. These causal relationships re�ected the
dynamics of the inherent signals. M���P���� can also discover the
time-evolving causality in web data streams. For example, “Corona"
has an e�ect on other observations at the current point C2 = 208;
however, at C2 = 443, it shows no causal relationship with any of the
observations. In contrast, there are also causal relationships that
remain unchanged over time, such as those between “Coors" and
“Modelo” or “Coors” and “Sierra Nevada.” Figures 5 (a/b-iv) show the
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5
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L���� 1 (T��� ���������� �� R�����C�������). The time
complexity of R�����C������� is $ (# (32 + ⌘2) + :3), where : =
max8 (:8 ). Please see Appendix B for details.

4.2 Proposed streaming algorithm
Our next step is to answer the most important question: how can
we employ our proposed model for identifying the causal adjacency
matrix H from the demixing matrix] 2 ) and forecasting future
values in a streaming fashion? Before turning to the main topic, we
provide the de�nitions of some key concepts.

D��������� 6 (U����� ���������: 8). Let 8 be a parameter
set for updating a regime \ , i.e., 8 = {{V(8 ) }38=1, {& (8 ) }38=1}, where
V(8 ) = (X (8 )SX>

(8 ) )
�1 and & (8 ) is the energy.

D��������� 7 (F��� ��������� ���: F ). Let F be a full pa-
rameter set of M���P����, i.e., F = {⇥,⌦}, where ⇥ and ⌦ con-
sist of ' regimes and update parameters, respectively, namely, ⇥ =
{) 1, ..., )'}, and ⌦ = {81, ...,8'}.
With the above de�nitions, the formal problem is as follows:

P������ 1. Given a multivariate data stream ^ , where x (C2 ) is
the most recent value at time point C2 ,

• Find the optimal full parameter set, i.e., F = {⇥,⌦},
• Discover the time-evolving causality, i.e., B,
• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),

Here, we refer to the regime for the current window ^2 = ^ [C< :
C2 ] as )2 , and the update parameter corresponding to )2 as 82 . In
addition, we need the latent vectors Y (C2 ) at the current time C2 for
forecasting an ;B -steps-ahead future value v (C2 + ;B ), and so keep
it as Y24= . In summary, our proposed algorithm keeps them as the
model candidate C = {)2 ,82 , Y24=} for stream processing.

4.2.1 Overview. We now introduce our streaming algorithm,M���
�P����, which consists of the following algorithms.
• M���E��������: Estimates the optimal full parameter set F

and the model candidate C.
• M���G��������: Forecasts an ;B -steps-ahead future value, i.e.,

v (C2 + ;B ), and identi�es the causal adjacency matrix H, using
the model candidate C.

• R�����U������: Updates the current regime )2 using update
parameter 82 and the most recent value x (C2 ).

Algorithm 1 (See Appendix B) provides an overview of M���P����.
Given a new value x (C2 ) at the current time C2 , it updates the full
parameter set F and the model candidate C by usingM���E������
���. Next, it generates an ;B -steps-ahead future value v (C2 + ;B ) and
the causal adjacency matrix H from the demixing matrix] 2 )2

usingM���G��������. Finally, if a new regime is not created, it
also updates the model candidate C with a new value x (C2 ).
4.2.2 M���E��������. Given a new value x (C2 ) at the current time
C2 , we �rst need to update the full parameter set F incrementally
and the model candidate C, which best describes the current win-
dow^2 . Algorithm 2 (See Appendix B) is theM���E�������� algo-
rithm in detail. Here, let 5 (^2 ; Y20, )

2 ) be a new function for estimat-
ing the optimal parameter so that it minimizes the mean square er-
rors between the current window ^2 and the estimated window \2

in Model 2, i.e., 5 (^2 ; Y20, )
2 ) = ÕC2

C=C<+⌘�1 | |x (C)�v (C) | |, where Y
2
0

represents the latent vectors at time point C< +⌘�1. Note that when
embedding the time series using g(·), the number of data points
(namely, the number of columns in the Hankel matrixN ) is partially
reduced compared with before embedding. The most straightfor-
ward way to determine Y20 is to adopt {�†

(8 )g(4 (8 ) (C< + ⌘ � 1))}38=1
according to Eq. (3). However, the noisy initial conditions give rise
to unexpected forecasting. Therefore, we optimize Y20 by using the
Levenberg-Marquardt (LM) algorithm [42] and thus enable the ef-
fects of noise in observations to be removed. Here, we return to the
M���E�������� algorithm, which proceeds as follows:
I. It optimizes initial condition Y20 , so that it minimizes the errors

between the current window ^2 and the current regime )2 .
II. If 5 (^2 ; Y20, )

2 ) > g , it searches for a better regime ) 2 ⇥.
III. If 5 (^2 ; Y20, )

2 ) > g still holds, it creates a new regime for ^2

using R�����C�������, and inserts it into ⇥.

4.2.3 M���G��������. The next algorithm is M���G��������,
which incrementally forecasts an ;B -steps-ahead future value v (C2 +
;B ) and identi�es the causal adjacency matrix H by using the model
candidate C. As for forecasting, it generates the value of v (C2 + ;B )
according to Eq. (3) with the most suitable regime )2 for ^2 , which
is selected by M���E��������. On the other hand, we identify
the causal adjacency matrix H from the demixing matrix] 2 )2 .
A mixing matrix (i.e., the inverse of a demixing matrix) typically
has the two major indeterminacies: the order and scaling of the
independent components; however, we must address the above
di�culties if we are to identify the optimal causal adjacency ma-
trix. The algorithm for resolving the above indeterminacies and
identifying the causal adjacency matrix H proceeds as follows:
I. Find the permutation of rows of ] that yields a matrix ]̃

without any zeros on the main diagonal.
II. Divide each row of ]̃ by its corresponding diagonal element

to yield a new matrix ]̃ 0 with all ones on the diagonal.
III. Compute an estimate Ĥ of H using Ĥ = O � ]̃ 0.
IV. Finally, to �nd a causal order, compute the permutation matrix

Q of Ĥ that yields a matrix H̃ = QĤQ>, which minimizes the
sum of the elements in the upper triangular part of H̃.

This algorithm resolves two major indeterminacies in a mixing
matrix in steps I and II. Moreover, it �nds the causal order, in other
words, it removes the insu�cient connection in step IV. The causal
relationships are already identi�ed up to step III, but this step is
important for visualizing the resulting directed acyclic graph.

L���� 2 (C����� ���������������). Causal discovery in M���
�P���� is equivalent to �nding the causal adjacency matrix H in
M���G��������. Please see Appendix B for details.

This lemma demonstrates theoretically that our proposed algorithm
is capable of discovering causal relationships.

4.2.4 R�����U������. Finally, when an existing regime is selected
as the current regime )2 from the regime set ⇥, we update its pa-
rameters (i.e.,] ,D(1) , ...,D(3 ) ) using a new value x (C2 ) to ensure
that this regime represents a more sophisticated dynamical pattern.
In short, R�����U������ has two parts: (i) update the demixing ma-
trix] and (ii) update each self-dynamics factor setD(8 ) . In part (i),
we use an algorithm based on adaptive �ltering techniques [26, 60].
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L���� 1 (T��� ���������� �� R�����C�������). The time
complexity of R�����C������� is $ (# (32 + ⌘2) + :3), where : =
max8 (:8 ). Please see Appendix B for details.

4.2 Proposed streaming algorithm
Our next step is to answer the most important question: how can
we employ our proposed model for identifying the causal adjacency
matrix H from the demixing matrix] 2 ) and forecasting future
values in a streaming fashion? Before turning to the main topic, we
provide the de�nitions of some key concepts.

D��������� 6 (U����� ���������: 8). Let 8 be a parameter
set for updating a regime \ , i.e., 8 = {{V(8 ) }38=1, {& (8 ) }38=1}, where
V(8 ) = (X (8 )SX>

(8 ) )
�1 and & (8 ) is the energy.

D��������� 7 (F��� ��������� ���: F ). Let F be a full pa-
rameter set of M���P����, i.e., F = {⇥,⌦}, where ⇥ and ⌦ con-
sist of ' regimes and update parameters, respectively, namely, ⇥ =
{) 1, ..., )'}, and ⌦ = {81, ...,8'}.
With the above de�nitions, the formal problem is as follows:

P������ 1. Given a multivariate data stream ^ , where x (C2 ) is
the most recent value at time point C2 ,

• Find the optimal full parameter set, i.e., F = {⇥,⌦},
• Discover the time-evolving causality, i.e., B,
• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),

Here, we refer to the regime for the current window ^2 = ^ [C< :
C2 ] as )2 , and the update parameter corresponding to )2 as 82 . In
addition, we need the latent vectors Y (C2 ) at the current time C2 for
forecasting an ;B -steps-ahead future value v (C2 + ;B ), and so keep
it as Y24= . In summary, our proposed algorithm keeps them as the
model candidate C = {)2 ,82 , Y24=} for stream processing.

4.2.1 Overview. We now introduce our streaming algorithm,M���
�P����, which consists of the following algorithms.
• M���E��������: Estimates the optimal full parameter set F

and the model candidate C.
• M���G��������: Forecasts an ;B -steps-ahead future value, i.e.,

v (C2 + ;B ), and identi�es the causal adjacency matrix H, using
the model candidate C.

• R�����U������: Updates the current regime )2 using update
parameter 82 and the most recent value x (C2 ).

Algorithm 1 (See Appendix B) provides an overview of M���P����.
Given a new value x (C2 ) at the current time C2 , it updates the full
parameter set F and the model candidate C by usingM���E������
���. Next, it generates an ;B -steps-ahead future value v (C2 + ;B ) and
the causal adjacency matrix H from the demixing matrix] 2 )2

usingM���G��������. Finally, if a new regime is not created, it
also updates the model candidate C with a new value x (C2 ).
4.2.2 M���E��������. Given a new value x (C2 ) at the current time
C2 , we �rst need to update the full parameter set F incrementally
and the model candidate C, which best describes the current win-
dow^2 . Algorithm 2 (See Appendix B) is theM���E�������� algo-
rithm in detail. Here, let 5 (^2 ; Y20, )

2 ) be a new function for estimat-
ing the optimal parameter so that it minimizes the mean square er-
rors between the current window ^2 and the estimated window \2

in Model 2, i.e., 5 (^2 ; Y20, )
2 ) = ÕC2

C=C<+⌘�1 | |x (C)�v (C) | |, where Y
2
0

represents the latent vectors at time point C< +⌘�1. Note that when
embedding the time series using g(·), the number of data points
(namely, the number of columns in the Hankel matrixN ) is partially
reduced compared with before embedding. The most straightfor-
ward way to determine Y20 is to adopt {�†

(8 )g(4 (8 ) (C< + ⌘ � 1))}38=1
according to Eq. (3). However, the noisy initial conditions give rise
to unexpected forecasting. Therefore, we optimize Y20 by using the
Levenberg-Marquardt (LM) algorithm [42] and thus enable the ef-
fects of noise in observations to be removed. Here, we return to the
M���E�������� algorithm, which proceeds as follows:
I. It optimizes initial condition Y20 , so that it minimizes the errors

between the current window ^2 and the current regime )2 .
II. If 5 (^2 ; Y20, )

2 ) > g , it searches for a better regime ) 2 ⇥.
III. If 5 (^2 ; Y20, )

2 ) > g still holds, it creates a new regime for ^2

using R�����C�������, and inserts it into ⇥.

4.2.3 M���G��������. The next algorithm is M���G��������,
which incrementally forecasts an ;B -steps-ahead future value v (C2 +
;B ) and identi�es the causal adjacency matrix H by using the model
candidate C. As for forecasting, it generates the value of v (C2 + ;B )
according to Eq. (3) with the most suitable regime )2 for ^2 , which
is selected by M���E��������. On the other hand, we identify
the causal adjacency matrix H from the demixing matrix] 2 )2 .
A mixing matrix (i.e., the inverse of a demixing matrix) typically
has the two major indeterminacies: the order and scaling of the
independent components; however, we must address the above
di�culties if we are to identify the optimal causal adjacency ma-
trix. The algorithm for resolving the above indeterminacies and
identifying the causal adjacency matrix H proceeds as follows:
I. Find the permutation of rows of ] that yields a matrix ]̃

without any zeros on the main diagonal.
II. Divide each row of ]̃ by its corresponding diagonal element

to yield a new matrix ]̃ 0 with all ones on the diagonal.
III. Compute an estimate Ĥ of H using Ĥ = O � ]̃ 0.
IV. Finally, to �nd a causal order, compute the permutation matrix

Q of Ĥ that yields a matrix H̃ = QĤQ>, which minimizes the
sum of the elements in the upper triangular part of H̃.

This algorithm resolves two major indeterminacies in a mixing
matrix in steps I and II. Moreover, it �nds the causal order, in other
words, it removes the insu�cient connection in step IV. The causal
relationships are already identi�ed up to step III, but this step is
important for visualizing the resulting directed acyclic graph.

L���� 2 (C����� ���������������). Causal discovery in M���
�P���� is equivalent to �nding the causal adjacency matrix H in
M���G��������. Please see Appendix B for details.

This lemma demonstrates theoretically that our proposed algorithm
is capable of discovering causal relationships.

4.2.4 R�����U������. Finally, when an existing regime is selected
as the current regime )2 from the regime set ⇥, we update its pa-
rameters (i.e.,] ,D(1) , ...,D(3 ) ) using a new value x (C2 ) to ensure
that this regime represents a more sophisticated dynamical pattern.
In short, R�����U������ has two parts: (i) update the demixing ma-
trix] and (ii) update each self-dynamics factor setD(8 ) . In part (i),
we use an algorithm based on adaptive �ltering techniques [26, 60].
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Figure 1: Modeling power of M���P���� over an epidemio-
logical data stream (i.e., #1 covid19) on January 8, 2021 (top)
and May 19, 2022 (bottom)

Next, we provide the overview of our streaming optimization
algorithm. Given a new value x(C2 ) at the current time C2 , it updates
the full parameter set F and the model candidate C, where the
full parameter set F is the digest of the whole data stream and the
model candidate C is the parameter set of the current regime. If any
regime in full parameter set F is not good, it creates a new regime.
Next, it generates predictive future values and the causal adjacency
matrix according to the model candidate C. Finally, if a new regime
is not created, it also updates the model candidate C with a new
value x(C2 ) to re�ect the latest information into a model.

3 EXPERIMENTS
In this section, we evaluate the performance of M���P���� using
the real datasets. We answer the following questions.
Q1. E�ectiveness: How well does it extract dynamical patterns?
Q2. Accuracy: How accurately does it forecast future values?
Q3. Scalability: How does it scale in terms of computational time?
Datasets & experimental setup. We used four real datasets re-
lated to epidemiology, web activity, and human movement.
• (#1) covid19: was obtained fromGoogle COVID-19OpenData [9].
• (#2) web-search: consists of web-search counts on Google [10].
• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [4].

We compared our algorithm with the following baselines for fore-
casting, including TimesNet [26], PatchTST [20], DeepAR [22], Or-
bitMap [17], and ARIMA [2].
Q1. E�ectiveness.We �rst demonstrated how e�ectivelyM����
P���� discovers the time-evolving causalities and forecasts future
values using the epidemiological data stream (i.e., #1 covid19). Fig-
ures 1 (a/b-i) show stream forecasting results. M���P���� adap-
tively captures the exponential rising patterns and forecasts future
values close to the originals. Figures 1 (a/b-ii) show graphical rep-
resentations of the causal adjacency matrix B. Most importantly,
the causal relationships evolve over time in proportion to the evo-
lution of the exogenous variables. M���P���� can continuously

Figure 2: Accuracy score:M���P���� is consistently superior
to its competitors (lower is better).

Figure 3: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis is a logarithmic scale.

and promptly detect new actual causative events around the world
(e.g., the discovery of the new coronavirus in South Africa and the
strict lockdown in Shanghai [3, 7]).
Q2. Accuracy. We next evaluated the quality of M���P���� in
terms of ;B -steps-ahead forecasting accuracy. Figure 2 shows the
overall results. Our method achieved a high forecasting accuracy
for every dataset compared with the competitors. While deep learn-
ing models exhibit high generality for time series modeling; they
reduced the forecasting accuracy because they could not adjust
model parameters incrementally. OrbitMap is capable of handling
multiple discrete non-linear dynamics but misses the time-evolving
causalities, so our method outperformed it.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 3 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computation time at each time point C2 on the left, and the
average on the right. Note that both �gures are shown in linear-log
scales. Our method consistently outperformed its competitors in
terms of computation time thanks to our incremental update.

4 CONCLUSION AND FUTURE WORK
In this paper, we presented M���P����, which discovers the time-
evolving causalities in a co-evolving data stream and forecasts fu-
ture values. Additionally, it is adaptable to various types of datasets
and very large sequences without depending on the length of data
streams. In future work, we will quantitatively evaluate that M���
�P���� can discover the time-evolving causalities using synthetic
datasets. In details, we are plan to generate synthetic datasets with
acyclic causal structures according to the the Erdos-Renyi model [6],
varying the number of variables to test multiple scenarios.
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the full parameter set F and the model candidate C, where the
full parameter set F is the digest of the whole data stream and the
model candidate C is the parameter set of the current regime. If any
regime in full parameter set F is not good, it creates a new regime.
Next, it generates predictive future values and the causal adjacency
matrix according to the model candidate C. Finally, if a new regime
is not created, it also updates the model candidate C with a new
value x(C2 ) to re�ect the latest information into a model.
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Q1. E�ectiveness: How well does it extract dynamical patterns?
Q2. Accuracy: How accurately does it forecast future values?
Q3. Scalability: How does it scale in terms of computational time?
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ures 1 (a/b-i) show stream forecasting results. M���P���� adap-
tively captures the exponential rising patterns and forecasts future
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the causal relationships evolve over time in proportion to the evo-
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and promptly detect new actual causative events around the world
(e.g., the discovery of the new coronavirus in South Africa and the
strict lockdown in Shanghai [3, 7]).
Q2. Accuracy. We next evaluated the quality of M���P���� in
terms of ;B -steps-ahead forecasting accuracy. Figure 2 shows the
overall results. Our method achieved a high forecasting accuracy
for every dataset compared with the competitors. While deep learn-
ing models exhibit high generality for time series modeling; they
reduced the forecasting accuracy because they could not adjust
model parameters incrementally. OrbitMap is capable of handling
multiple discrete non-linear dynamics but misses the time-evolving
causalities, so our method outperformed it.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 3 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computation time at each time point C2 on the left, and the
average on the right. Note that both �gures are shown in linear-log
scales. Our method consistently outperformed its competitors in
terms of computation time thanks to our incremental update.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented M���P����, which discovers the time-
evolving causalities in a co-evolving data stream and forecasts fu-
ture values. Additionally, it is adaptable to various types of datasets
and very large sequences without depending on the length of data
streams. In future work, we will quantitatively evaluate that M���
�P���� can discover the time-evolving causalities using synthetic
datasets. In details, we are plan to generate synthetic datasets with
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varying the number of variables to test multiple scenarios.


