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ABSTRACT

Given an extensive, semi-infinite collection of multivariate co-
evolving data sequences, whose observations influence each other,
how can we discover the interpretable time-changing cause-and-
effect relationships in co-evolving data streams? In this paper, we
present a novel streaming method, ModePlait, which is designed
for modeling such causal relationships (i.e., time-evolving causali-
ties) in co-evolving data streams and forecasting their future values.
Additionally,ModePlait can be practically applied to various types
of data streams and very large sequences without depending on
the length of data streams. Extensive experiments on real datasets
demonstrate thatModePlait discovers the time-evolving causal-
ities between observations in data streams while simultaneously
providing improved forecasting accuracy and a sufficiently fast
computational speed.
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1 INTRODUCTION

In recent years, a substantial amount of multivariate time series data
has been generated from various events and applications related
to the Internet of Things (IoT) [5, 16], web activities [14, 19], the
spread of infectious diseases [15], and patterns of user behavior [18].
Generally, there are various relationships between observations in
time series data (e.g., correlation, independency). These are critical
characteristics for a wide range of problems [11, 12, 25], of which
causality is particularly valuable [1, 24], with many studies dedi-
cated to it [8, 13]; however, none of these methods are capable of
discovering causal relationships that evolve over time in time series
data. It is crucial to discover such causal relationships, if we are
to detect new causative factors promptly and accurately forecast
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future values in a streaming fashion. Their pivotal role becomes
increasingly apparent upon recognizing that real data streams con-
tain these connections. For example, with the spread of infectious
diseases, when a new virus strain emerges in a particular country,
certain activities, such as cross-border travel, can lead to an increase
in the number of infections in other countries, and the causative
countries change over time. Here, we refer to such time-changing
causal relationships as “time-evolving causalities.” So, how can we
model semi-infinite multivariate data sequences and capture the
time-evolving causalities in data streams?

There are some difficulties involved in designing the model for
discovering the time-evolving causalities, one of which is an exis-
tence of distinct dynamical patterns. Data streams typically contain
various types of distinct dynamical patterns, and it is essential to
understand their changes if we are to model a whole data stream
more effectively. For example, in the context of web search activ-
ities, we can identify various types of pattern changes due to a
multitude of reasons, such as a new item release. We refer to these
distinct dynamical patterns as “regimes.”

In this paper, we presentModePlait [23] which discovers the
time-evolving causalities and forecasts future values, continuously
and quickly, in a streaming fashion.

2 OUR PROPOSAL

We design our proposed model based on the structural equation
model [21]. which is written as Xsem = BsemXsem + Esem, where
Xsem is the observed variables, Bsem is the causal adjacency matrix,
and Esem is a set of mutually independent exogenous variables with
a non-Gaussian distribution. The structural equation model can
express typical causality, while it cannot do the following causality:

Definition 1 (Time-evolving causality). Let B be a causal
adjacency matrix, where we consider that it changes in proportion to
the evolution of the exogenous variables E.

In our model, we assume that the exogenous variables evolve over
time as a dynamical system; however, it is unsuitable that we con-
sider them asmultivariate time series due to their independence.We
design the model governing a single major dynamical pattern (i.e.,
regime) based on the above and use multiple regimes to summarize
a stream. Consequently, we have the following:

Definition 2 (Regime). Let 𝜽 be the parameter set of a single
regime. When there are 𝑅 regimes up to the time point 𝑡 , a regime
set is defined by 𝚯 = {𝜽 1, ..., 𝜽𝑅}, which describes multiple distinct
dynamical patterns in a whole data stream.
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Figure 1: Modeling power of ModePlait over an epidemio-

logical data stream (i.e., #1 covid19) on January 8, 2021 (top)

and May 19, 2022 (bottom)

Next, we provide the overview of our streaming optimization
algorithm. Given a new value x(𝑡𝑐 ) at the current time 𝑡𝑐 , it updates
the full parameter set F and the model candidate C, where the
full parameter set F is the digest of the whole data stream and the
model candidate C is the parameter set of the current regime. If any
regime in full parameter set F is not good, it creates a new regime.
Next, it generates predictive future values and the causal adjacency
matrix according to the model candidate C. Finally, if a new regime
is not created, it also updates the model candidate C with a new
value x(𝑡𝑐 ) to reflect the latest information into a model.

3 EXPERIMENTS

In this section, we evaluate the performance of ModePlait using
the real datasets. We answer the following questions.
Q1. Effectiveness: How well does it extract dynamical patterns?
Q2. Accuracy: How accurately does it forecast future values?
Q3. Scalability: How does it scale in terms of computational time?
Datasets & experimental setup. We used four real datasets re-
lated to epidemiology, web activity, and human movement.
• (#1) covid19: was obtained fromGoogle COVID-19OpenData [9].
• (#2) web-search: consists of web-search counts on Google [10].
• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [4].

We compared our algorithm with the following baselines for fore-
casting, including TimesNet [26], PatchTST [20], DeepAR [22], Or-
bitMap [17], and ARIMA [2].
Q1. Effectiveness.We first demonstrated how effectivelyMode-
Plait discovers the time-evolving causalities and forecasts future
values using the epidemiological data stream (i.e., #1 covid19). Fig-
ures 1 (a/b-i) show stream forecasting results. ModePlait adap-
tively captures the exponential rising patterns and forecasts future
values close to the originals. Figures 1 (a/b-ii) show graphical rep-
resentations of the causal adjacency matrix B. Most importantly,
the causal relationships evolve over time in proportion to the evo-
lution of the exogenous variables. ModePlait can continuously
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Figure 2: Accuracy score:ModePlait is consistently superior

to its competitors (lower is better).

Figure 3: Scalability of ModePlait: (left) Wall clock time vs.

data stream length 𝑡𝑐 and (right) average time consumption

for (#4) exercise. The vertical axis is a logarithmic scale.

and promptly detect new actual causative events around the world
(e.g., the discovery of the new coronavirus in South Africa and the
strict lockdown in Shanghai [3, 7]).
Q2. Accuracy. We next evaluated the quality of ModePlait in
terms of 𝑙𝑠 -steps-ahead forecasting accuracy. Figure 2 shows the
overall results. Our method achieved a high forecasting accuracy
for every dataset compared with the competitors. While deep learn-
ing models exhibit high generality for time series modeling; they
reduced the forecasting accuracy because they could not adjust
model parameters incrementally. OrbitMap is capable of handling
multiple discrete non-linear dynamics but misses the time-evolving
causalities, so our method outperformed it.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 3 compares the compu-
tational efficiencies of ModePlait and its competitors. It presents
the computation time at each time point 𝑡𝑐 on the left, and the
average on the right. Note that both figures are shown in linear-log
scales. Our method consistently outperformed its competitors in
terms of computation time thanks to our incremental update.

4 CONCLUSION AND FUTUREWORK

In this paper, we presented ModePlait, which discovers the time-
evolving causalities in a co-evolving data stream and forecasts fu-
ture values. Additionally, it is adaptable to various types of datasets
and very large sequences without depending on the length of data
streams. In future work, we will quantitatively evaluate that Mod-
ePlait can discover the time-evolving causalities using synthetic
datasets. In details, we are plan to generate synthetic datasets with
acyclic causal structures according to the the Erdos-Renyi model [6],
varying the number of variables to test multiple scenarios.
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