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Multivariate Time Series

> Time series data has been collected from various domains

Motion analysis Epidemiology Web activity
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Multivariate Time Series

» Time series data has been collected from various domains
> Inreal-world scenarios, these data are generated quickly and

continuously
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Relationships between Observations

> Relationships between observations are critical for a wide range
of time series analysis

< E.g., Correlation, Causality, Independency

> Causality describes the relationship between cause and effect

< Discovering causal relationships in time series data has been
a long-standing challenge across many fields
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Challenges: Time-evolving Causality

» However, most methods assume that causal relationships do
not evolve over time @@

< Such approaches fall short in real-world applications
» We refer to such relationships as time-evolving causality

Example. Spread of infectious diseases A
% The emergence of a new virus strain leads to an

increase in the number of infections in other countries
% Causative countries change over time y
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Challenges: Time-evolving Causality

We propose a novel streaming method ModePlait for
modeling time-evolving causality and forecasting.
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Problem Definition

» Given: Semi-infinite multivariate data stream X = {x(1), ..., x(t,), ...}
» Goals: Achieve all of the following requirements: (¢ Current time point)
% Find distinct dynamical patterns (i.e., regimes)
% Discover time-evolving causality
% Forecast an [ -steps-ahead future value

Data Stream X
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Principles and Concepts

» We design our proposed model based on the structural equation
model (SEM) [Pearl 2009]

Xsem = Bsem Xsemt Esem
Observed variables Causal adjacency matrix Exogenous variables
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Principles and Concepts

» We design our proposed model based on the structural equation
model (SEM) [Pearl 2009]
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Principles and Concepts

» We design our proposed model based on the structural equation
model (SEM) [Pearl 2009]

Xsem = Bgem Xsemt Esem
Exogenous variables
91 [iiee)e] I8
O _ ® O N . > independent
O o O @
O le Lol le:

® : related Unique component °
ol o
RS August 3-7 2025 - not related of each variable ()
=> °
7. KDD2%25 Naoki 13 SANKEN




Principles and Concepts

» We need to resolve the following questions to achieve our goal
<+ How can we represent the inherent signals?
< What is the best model for a single regime?
<+ How can we handle multiple regimes in a data stream?
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Principles and Concepts

» We need to resolve the following questions to achieve our goal
<+ How can we represent the inherent signals?
< What is the best model for a single regime?

<+ How can we handle multiple regimes in a data stream?
h 4

1. Latent temporal dynamics of inherent signals
2. Dynamical patterns in a single regime
3. Transitions of regimes in a multivariate data stream
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Latent temporal dynamics of inherent signal

» We need to capture latent dynamics in univariate time series
< Single dimension is inadequate for modeling the system ¢
< We adopt the time-delay embedding to augment a state

______________________________

— ] \ \

: Inherent signal e ;) |

T T 2o Hey = gle@(h) gle@(h+1)) - glew ()
N—h+1 | | | |
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Latent temporal dynamics of inherent signal

» We need to capture latent dynamics in univariate time series
< Single dimension is inadequate for modeling the system ¢
< We adopt the time-delay embedding to augment a state

______________________________
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Latent temporal dynamics of inherent signal

» Thei-thinherentsignal e, is given by the following equations

_____________________________________________

Hankel matrix ~ Self-dynamics factor set D) :
A N |

f—%
: Inherent signal e ;) :
Ll—~—-—"~_~"| = h| Hy = h|®y| ki Ay : . . { . . }
B S Pay =12, A
I N—-h+1 ki :
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s£i2 (t + 1) = A(i) S(i) (t) . k;-dimensional space
Latent vector
C. €(i) (t) = g_l ((I)(i) S(i) (t)) : Projection (C¥ - R)
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Latent temporal dynamics of inherent signal

» Thei-thinherentsignal e, is given by the following equations

_____________________________________________

Hankel matrix ~ Self-dynamics factor set D) :
A N |

/—%
: Inherent signal e ;) :
Ll—~—-—"~_~"| = h| Hy = h|®y| ki Ay : . . { . . }
i v Y Dy = Pa), A
N—-h+1 ' '
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S(i) (t + 1) = AQQ S(i) (t) . k;-dimensional space
Eigenvalues
C. €(i) (t) = g_l ((I)(i) S(i) (t)) : Projection (C¥ - R)
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Latent temporal dynamics of inherent signal

» Thei-thinherentsignal e, is given by the following equations

_____________________________________________

Hankel matrix ~ Self-dynamics factor set D) :
— A v

i ——~—— ~_—~ | = h| Hy = h| ®n| k| Ag i —
: v 15 Day = 1®a), Awy g

— e e e e e e e e e e mmm M e e Mmm M e M M M e Mmm M e e Mmm M e e G e e e e e e s w)

S(i) (t+1) = A(i) S(i) (t) : k;-dimensional Space

C‘ ey () =g (@) s(i) () : Projection (C* - R)
augmentation Time-delay Mode
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Latent temporal dynamics of inherent signal

» Thei-thinherentsignal e, is given by the following equations

_____________________________________________

Hankel matrix ~ Self-dynamics factor set D) :
— A v

Self-dynamics factor set
i —~_—~— ~__~ | > h Hy = h| ®yn| k| Ay : . _ ] .
: v 15 | Dey = 1®a), Awy )
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S(i) (t+1) = A(i) S(i) (t) : k;-dimensional Space

C'- €(i) (t) = g_l ((I)(i) S(i) (t)) : Projection (C¥ - R)
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Dynamical pattern in a single regime

» The single regime is governed by the following equations

Inherent signals E Mixing matrix Regime parameter set 6 Causal
Multivariate time series X ‘ A N s A \ r A v relationship B
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Dynamical pattern in a single regime

» The single regime is governed by the following equations

Inherent signals E Mixing matrix Regime parameter set 6 Causal
Multivariate time series X ‘ A N s A \ r A v relationship B
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Dynamical pattern in a single regime

» The single regime is governed by the following equations

Inherent signals E Mixing matrix Regime parameter set 6 Causal
Multivariate time series X ‘ A N s A \ r A v relationship B
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Transitions of regimes

» The transitions of regimes in a multivariate data stream
% Regimeset® = {0',07,..,0%} (6'={W, Dy, .., D })

Data stream X / N\
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Optimization Algorithm

Proposed algorithm consists of the following components

» ModeEstimator by, @ | Time-evolving”[ by, @ | B
o causality ‘

~ Vbsy > lb31 Future values
> RegimeCreation =9 gy (unknown)

ST eeeeeae ’ ....... R ®

] B | {7 e
> ModeGenerator e 5 TR W ........ i :
Timet — tm N te te + 15

» RegimeUpdater Foreeas

, R : : Dipy| -~ | D
R{ Regime set . 1:/.[0‘1‘: w @], 2@ l;-steps-ahead
0 stimator ; ’ .
! Current regime: 9¢ € ¢ | future value

U pdate pa ra meter. insert new regime 1 ='.“ : i.e., V(tc + lS)

estimate

o={{P} . {ex}l} T 1. = N g . /
gz g < egime > ~
I Creation

Full parameter set: Model candidate: Causal adjacency matrix
? = {@, Q} C = {003 wC’ Sgn}
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Optimization Algorithm

Proposed algorithm consists of the following components

> ModeEstimator

% Estimate F and C which
appropriately describes the
current dynamical pattern

» RegimeCreation
R { Regime set ) Mode u/ D(l) ’ "', D(d)
< Estimat0r> , ’
> MOdeGenerator 0 - { Current regime: 8¢ € C

insert new regime ¢ T

» RegimeUpdater

K
[ ]
'><>4 August 3-7,2025 Q

2 <><]KDD2*25 © 2025 Naoki Chihara et al. 28 SANKEN



Optimization Algorithm

Proposed algorithm consists of the following components
» ModeEstimator

> RegimeCreation

\/

** When it encounters
an unknown pattern in X¢,

It estimates a new regime 0 {ﬁ
R { | Regime set
> ModeGenerator :

insert new regime

» RegimeUpdater O | <§gtm>

Current window: X¢
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Optimization Algorithm

Proposed algorithm consists of the following components
» ModeEstimator
» RegimeCreation

> ModeGenerator

% itidentifies B and forecasts -
l,-steps-ahead future value LW [2al, -, [P@] | epehead
u S| N g C Current regime: 6¢ € C i.fal.lfl\l/rg::’j-hll:)
. ‘ estimate L/
> RegimeUpdater B S AV 2
Causal adjacency matrix vt
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Optimization Algorithm

Proposed algorithm consists of the following components

» ModeEstimator » Update demixing matrix W
» RegimeCreation % It is based on adaptive filtering

> ModeGenerator * Ensure time and memory efficiency

> RegimeUpdater > Update self-dynamics factor set D;

< it updates 8¢ using w € C and A" = Ay (gleq) (te)) = ALY gleq (te = D))
the most recent value x(t.) gleqi)(te — 1)) T PETE"
V(i) =

1+ gleqy (te — 1))TP(p§ev gle)(te — 1))

1
P = — (PP = P gles(te = D))
e er © (4) () €(2) (4)
s in pap p
petail 0
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Theoretical Analysis

» LEMMA 2 (CAUSAL IDENTIFIABILITY).
Causal discovery in MODEPLAIT is equivalent to finding the causal
adjacency matrix B in MODEGENERATOR.

\/

% It theoretically discovers causal relationships

» LEMMA 3 (TIME COMPLEXITY OF MODEPLAIT).
The time complexity of MODEPLAIT is at least O(N Y.; k; + dh?) and at most
O(RN Y; k; + N(d* + h*) + k?) per process.

% It requires only constant time w.r.t. the entire data stream length
% It is practical for semi-infinite data streams
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We aim to evaluate that ModePlait has ...

> Q1. Effectiveness
How well does it find the time-evolving causality?

» Q2. Accuracy

How accurately does it discover time-evolving causality and forecast
future values?

> Q3. Scalability

How does it scale in terms of computational time?

?
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Experimental Setup

> 5 datasets > 12 baselines
d Synthetics @ # CASPER
A o < DARING
% We used it for the quantitative & NoCurl
evaluation of causal discovery & NO-MLP 7 models for
% 5 different temporal sequences % NOTEARS causal discovery
. C— %+ LINGAM
[ Real-world datasets SEe - GIES
** Various domains datasets s TimesNet
e Number of COVID-19 infections s PatchTST . dels for ti
« Web-search counts < DeepAR n?o is of Itr.ne
- Sensor data from motion captures < OrbitMap >eries forecasting
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Q1. Effectiveness

> Preview of our results from an epidemiological data stream  #a&
< It consists of the number of COVID-19 infections in five countries

*

Base of arrows is /@ /Ql\b\
cause, head is effect @\‘AL/ @ﬁ/ longest and toughest

lockdowns in Shanghai

4 . iy
Health officials report a new (a-i) January 8, 2021 (a-if) May 19, 2022 N
. . : (a) Causal relationships at different time points
Ilneage of the coronavirus in Accurate forecast based
\SOUth Africa » 05[= ~J] & on the current distinct
= 3 0
g T2 dynamical patterns
~0.5} , — : : J
Sep-19 May-17 Jun-06
Time Time
(c-i) September 27, 2021 (c-ii) June 5, 2022
(c) Snapshots of 10 days-ahead future value forecasting ®
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Q2. Accuracy: Causal Discovery

“How accurately does ModePlait
discover time-evolving causality in a data stream?"

Table 3: Causal discovering results with multiple temporal sequences to encompass various types of real-world scenarios.

Models MopEePLAIT CASPER DARING NoCurl NO-MLP NOTEARS LiNGAM GES

Metrics SHD SID | SHD SID | SHD SID | SHD SID | SHD SID | SHD SID | SHD SID | SHD SID
1,2,1 382 494 | 558 7.25 | 575 8.58 6.31 9.90 6.36 8.74 | 5.03 9.95 7.13  8.23 749 11.7
1,2,3 4.48 6.51 597 8.44 581 9.17 6.13 9.51 6.44 8.77 | 5.69 9.56 6.79 7.33 | 7.03 10.1

1,2,2,1 4.32 5.88 | 541 8.41 6.54 9.17 6.69 10.0 6.55 8.72 5.23 9.54 7.12  8.65 7.08 9.77
1,2,3,4 4.21 5.76 6.22 8.33 6.12 9.58 6.10 9.61 6.62 8.837 5.73 10.1 7.10  8.50 7.29 113
1,2,3,2,1 4.50 6.11 6.02 8.28 545 7.77 6.20 9.33 6.56 8.33 5.57 9.11 7.46  8.05 7.74 12.1

o,
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2. Accuracy: Time Series Forecasting

"How well does ModePlait forecast in a streaming fashion?”

Table 4: Multivariate forecasting results for both synthetic and real-world datasets. We used forecasting steps [ € {5, 10, 15}.

Models | MopePrarr | TimesNet | PatchTST | DeepAR | OrbitMap |  ARIMA
Metrics | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE
#0 synthetic 5] 0722 0.528 | 0805 0578 | 0768 0.581 | 1.043 0.821 | 0.826 0.567 | 0.962 0.748

10 | 0.829 0.607 | 0.862 0.655 | 0.898 0.649 | 1.073 0.849 | 0.8396 0.646 | 0.966 0.752
15| 0.923 0.686 | 0.940 0.699 | 0.973 0.706 | 1.137 0.854 | 0.966 0.710 | 0.982 0.765

H— #1 covid19 5 | 0.588 0.268 | 0.659 0.314 | 0.640 0.299 | 1.241 0.691 | 1.117 0.646 | 1.259 0.675
10 | 0.740 0.361 | 0.841 0.410 | 1.053 0.523 | 1.255 0.693 | 1.353 0.784 | 1.260  0.687
15| 0.932 0.461 | 1.026 0.516 | 1.309 0.686 | 1.265 0.690 | 1.351 0.792 | 1.277 0.718

'~

——— #2 web-search 5 | 0.573 0.442 | 0.626 0.469 | 0.719 0.551 | 1.255 1.024 | 0919 0.640 | 1.038 0.981
8 10 | 0.620 0.481 | 0.697 0.514 | 0.789 0.604 | 1.273 1.044 | 0960 0.717 | 1.247 1.037
- 15 | 0.646 0.505 | 0.701 0.527 | 0.742 0.571 | 1.300 1.069 | 0.828 0.631 | 1.038 0.795

#3 chicken-dance | 5 | 0.353 0.221 | 0.759 0.490 | 0.492 0.303 | 0.890 0.767 | 0.508 0.316 | 2.037 1.742
10 | 0.511 0.325 | 0.843 0.564 | 0.838 0.535 | 0.886 0.753 | 0.730 0.476 | 1.863 1.530
15 | 0.653 0.419 | 0.883 0.592 | 0.972 0.654 | 0.862 0.718 | 0.903 0.565 | 1.792 1.481

#4 exercise 5 (0309 0.177 | 0471 0.275 | 0.465 0.304 | 0.408 0.290 | 0.424 0.275 | 1.003 0.748
10 | 0.501 0.309 | 0.630 0.381 | 0.789 0.518 | 0.509 0382 | 0.616 0.377 | 1.104 0.814
15 | 0.687 0.433 | 0.786 0.505 | 1.147 0.758 | 0.676 0475 | 0.691 0434 | 1.126 0.901
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Q2. Accuracy: Ablation Study

“How substantially does causal discovery in a data stream
enhance forecasting accuracy?”

Table 5: Ablation study results with forecasting steps [; € {5, 10, 15} for both synthetic and real-world datasets.

Datasets #0 synthetic #1 covid19 #2 web-search | #3 chicken-dance #4 exercise
Metrics RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE RMSE MAE

MobEePrarT (full) 5 0.722  0.528 0.588 0.268 0.573 0.442 0.353 0.221 0.309 0.177
10 | 0.829  0.607 0.740  0.361 0.620 0.481 0.511 0.325 0.501  0.309
15 | 0923 0.686 0.932 0.461 0.646  0.505 0.653 0.419 0.687 0.433

w/o causality 5 0.759  0.563 0.758 0.374 0.575 0.437 0.391 0.262 0.375 0.218
10 | 0.925 0.696 0.848 0.466 0.666 0.511 0.590 0.398 0.707  0.433
15 1.001 0.760 1.144 0.583 0.708  0.545 0.821 0.537 0.856  0.533
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Q3. Scalability

Computational time at each time Average time
E 103 " X xx X ¥ X »«xx;-‘ X;& o p—
) Xﬁ&tf@é&%&m% i s 102 Method
£ ModePlait
|_ .
v 1 1 800X 101 OrbitMap
g 10 e ' PatchTST
O 100 ARIMA
g 1" » R N LS R ke R S R DeepAR
10_ f Y < x: i A O : .
2000 3000 4000 5000 10-1 .I TimesNet

Current Time Points Average

It requires only constant computational time with
regard to the entire data stream length
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ModePlait has all of the following desirable properties

> Effective

« It provides the time-evolving causality in a data stream based on
monitoring regimes
> Accurate

« It theoretically discovers time-evolving causality and precisely
forecasts

« Our experiments demonstrated that it outperforms its competitors

> Scalable
« Qur algorithm does not depend on data stream length
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Latent temporal dynamics of inherent signal

» We need to capture latent dynamics in univariate time series
< Single dimension is inadequate for modeling the system ¢
< We adopt the time-delay embedding to augment a state

______________________________

— ] \ \

: Inherent signal e ;) |

T 2 n o | Hey = gle@(h) gle@(h+1)) - gle@(t)
N—h+1 | | | |

According to 7
Takens' embedding gle (1) = (e (1), e (t —1),...,eqy(t —h+1)) € R"

theorem
Past history ®
o5 sz &
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Related work

» ModePlait has the relative advantages with regard to five aspects.

: >

SR R

O o ° E| O

E Z O B|=

Stream Processing - - - v/ -V
Forecasting v - -/ v
Data Compression - v - v - |V
Interdependency - vV /v - -V
Time-evolving Causality | - - - - - |/
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Related work

» ARIMA [Box and Jenkins 1976]
< Classical method for time series forecasting
< It assumes linear relationships between time series data @)

» OrbitMap [Matsubara and Sakurai 2019]
» Latest general method focusing on stream forecasting
< It cannot discover the time-evolving causality @)

4

L)

L)

L)
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Related work

> Most methods for causal discovery
v CASPER [Liu et al. 2023]etc.
< It cannot handle time series data/data streams @)

> Deep learning-based method for time series forecasting
s TimesNet [Wu et al. 2023] etc.

< The high computational costs associated with time series
analysis hinders continuous model updating @9
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Proposal: lllustration of ModePlait

Illustration of ModePlait is as follows

Hankel matrix ~ Self-dynamics factor set Dy;) Interpretability of modes
f—% r A A}
Inherent signal e;, Z
N k:
’ i
N—h+1 ki frequency (1<j<k;)
(a) Self-dynamics factor set (i.e., D ;) = {®(;),A;)})
Inherent signals E Mixing matrix Regime parameter set Causal
Multivariate time series X r A N A \ 5 A N relationship B
I 8(1) | D(l) % .
d > | e Cdl wtr | > 1 d| w g
: D ~ .
I €@ |, @ |,
N N d d

(b) Single regime parameter set (i.e., 0 = {W, D(y), .., D) })
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Experiments: Metrics

We adopted SHD and SID to evaluate causal discovery accuracy

» structural Hamming distance (SHD)
s It quantifies the difference in the causal adjacency matrix

» It counts missing, extra, and reversed edges

4

)

L)

4

)

L)

> structural intervention distance (SID)

< Itis particularly suited to evaluate causal discovering accuracy

< It counts the number of couples (i, j) such that the interventional
distribution p(x; | do(X; = ¥)) would be miscalculated if we used
the estimated causal adjacency matrix
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Experiments: Metrics

We used RMSE and MAE to evaluate time series forecasting accuracy
» root mean square error (RMSE) --- emphasizes large deviations

N
1
RMSE = NZ(YI: - ¥)
\ =1
> mean absolute error (MAE) --- measures the overall errors

N
1
MAE = NZD&' — ¥il
1=
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Experiments: Synthetics

Data stream X

d Cluster 1 Cluster 2 Cluster 3

Time t
me Example of synthetics, “1, 2, 3"

> We generated synthetic datasets containing multiple clusters
« Each cluster corresponds to one causal relationship
» The causal adjacency matrix B is created based on Erods-Rényi
« Edge density p = 0.5, Number of observationsd = 5

o
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