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Multivariate Time Series
Ø Time series data has been collected from various domains
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Multivariate Time Series
Ø Time series data has been collected from various domains
Ø In real-world scenarios, these data are generated quickly and 

continuously

Epidemiology
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Relationships between Observations
Ø Relationships between observations are critical for a wide range 

of time series analysis
v E.g., Correlation, Causality, Independency

Ø Causality describes the relationship between cause and effect
v Discovering causal relationships in time series data has been 

a long-standing challenge across many fields 
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Challenges: Time-evolving Causality
Ø However, most methods assume that causal relationships  do 

not evolve over time
v Such approaches fall short in real-world applications
v We refer to such relationships as time-evolving causality

© 2025 Naoki Chihara et al. 7

Example. Spread of infectious diseases
v The emergence of a new virus strain leads to an     

increase in the number of infections in other countries
v Causative countries change over time
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We propose a novel streaming method ModePlait for 
modeling time-evolving causality and forecasting.



Problem Definition
Ø Given: Semi-infinite multivariate data stream 𝑿 = {𝒙 1 ,… , 𝒙 𝑡! , … }
Ø Goals: Achieve all of the following requirements:

v Find distinct dynamical patterns (i.e., regimes)
v Discover time-evolving causality
v Forecast an 𝑙"-steps-ahead future value
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(𝑡!: Current time point)
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Principles and Concepts
Ø We design our proposed model based on the structural equation 

model (SEM) [Pearl 2009]
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Illusration of structural equation model (SEM)

Observed variables Exogenous variables
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Table 1: Capabilities of approaches.
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Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for

Table 2: Symbols and de�nitions.

Symbol De�nition

3 Number of dimensions
C2 Current time point
^ Co-evolving multivariate data stream (semi-in�nite)
^

2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#

⌘ Embedding dimension
g( ·) Observable for time-delay embedding, i.e., 6 : R! R⌘
N Hankel matrix
: Number of modes
� Modes of the system, i.e., � 2 R⌘⇥:
⇤ Eigenvalues of the system, i.e., ⇤ 2 R:⇥:
] Demixing matrix, i.e.,] = [w1, ...,w3 ]> 2 R3⇥3
H Causal adjacency matrix, i.e., H 2 R3⇥3

e (C ) Inherent signal at time point C , i.e., e (C ) = {4 (8 ) (C ) }38=1
Y (C ) Latent vectors at time point C , i.e., Y (C ) = {s (8 ) (C ) }38=1
v (C ) Estimated vector at time point C , i.e., v (C ) = {E(8 ) (C ) }38=1
D Self-dynamics factor set, i.e., D = {�,⇤}
) Regime parameter set, i.e., ) = {] , D(1) , ..., D(3 ) }
' Number of regimes
⇥ Regime set, i.e., ⇥ = {) 1, ..., )' }
B Time-evolving causality, i.e., B = {H1, ...,H' }
⌦ Update parameter set, i.e., ⌦ = {81, ...,8' }
F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
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where ^sem is the observed variables, Hsem is the causal adjacency
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In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for

Table 2: Symbols and de�nitions.

Symbol De�nition

3 Number of dimensions
C2 Current time point
^ Co-evolving multivariate data stream (semi-in�nite)
^

2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#

⌘ Embedding dimension
g( ·) Observable for time-delay embedding, i.e., 6 : R! R⌘
N Hankel matrix
: Number of modes
� Modes of the system, i.e., � 2 R⌘⇥:
⇤ Eigenvalues of the system, i.e., ⇤ 2 R:⇥:
] Demixing matrix, i.e.,] = [w1, ...,w3 ]> 2 R3⇥3
H Causal adjacency matrix, i.e., H 2 R3⇥3

e (C ) Inherent signal at time point C , i.e., e (C ) = {4 (8 ) (C ) }38=1
Y (C ) Latent vectors at time point C , i.e., Y (C ) = {s (8 ) (C ) }38=1
v (C ) Estimated vector at time point C , i.e., v (C ) = {E(8 ) (C ) }38=1
D Self-dynamics factor set, i.e., D = {�,⇤}
) Regime parameter set, i.e., ) = {] , D(1) , ..., D(3 ) }
' Number of regimes
⇥ Regime set, i.e., ⇥ = {) 1, ..., )' }
B Time-evolving causality, i.e., B = {H1, ...,H' }
⌦ Update parameter set, i.e., ⌦ = {81, ...,8' }
F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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desirable properties:
• E�ective: it discovers time-changing relationships between ob-
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Markov random �eld but cannot capture the causal relationships. In
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of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
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due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
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ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
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typical causality represents whether one observation causes an-
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e�ect relationships that evolve over time in a data stream. We try to
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is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
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gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.
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• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.
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In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
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forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
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with regard to the entire stream length.
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In this section, we brie�y describe investigations related to our
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with regard to �ve aspects.
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studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
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Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#
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F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
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pattern and generates future values continuously at any time.
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In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.
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In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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window C< and the current time point C2 , and the red vertical axis
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pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
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• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).
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with regard to the entire stream length.
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In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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the ;B = 10-steps-ahead future forecasting when given a current
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window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.
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In this section, we brie�y describe investigations related to our
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with regard to �ve aspects.
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many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.
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In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
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where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that

Modeling Time-evolving Causality over Data Streams KDD ’25, August 3–7, 2025, Toronto, Canada

Table 1: Capabilities of approaches.

A
RI
M
A
/+
+

TI
C
C

N
O
TE

A
RS

/+
+

O
rb
itM

ap

Ti
m
es
N
et

M
��

�P
��

��

Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for

Table 2: Symbols and de�nitions.

Symbol De�nition

3 Number of dimensions
C2 Current time point
^ Co-evolving multivariate data stream (semi-in�nite)
^

2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#

⌘ Embedding dimension
g( ·) Observable for time-delay embedding, i.e., 6 : R! R⌘
N Hankel matrix
: Number of modes
� Modes of the system, i.e., � 2 R⌘⇥:
⇤ Eigenvalues of the system, i.e., ⇤ 2 R:⇥:
] Demixing matrix, i.e.,] = [w1, ...,w3 ]> 2 R3⇥3
H Causal adjacency matrix, i.e., H 2 R3⇥3

e (C ) Inherent signal at time point C , i.e., e (C ) = {4 (8 ) (C ) }38=1
Y (C ) Latent vectors at time point C , i.e., Y (C ) = {s (8 ) (C ) }38=1
v (C ) Estimated vector at time point C , i.e., v (C ) = {E(8 ) (C ) }38=1
D Self-dynamics factor set, i.e., D = {�,⇤}
) Regime parameter set, i.e., ) = {] , D(1) , ..., D(3 ) }
' Number of regimes
⇥ Regime set, i.e., ⇥ = {) 1, ..., )' }
B Time-evolving causality, i.e., B = {H1, ...,H' }
⌦ Update parameter set, i.e., ⌦ = {81, ...,8' }
F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
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transitions between major dynamic time series patterns. However,
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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Principles and Concepts
Ø We need to resolve the following questions to achieve our goal
v How can we represent the inherent signals?
v What is the best model for a single regime?
v How can we handle multiple regimes in a data stream?
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1. Latent temporal dynamics of inherent signals
2. Dynamical patterns in a single regime
3. Transitions of regimes in a multivariate data stream



Latent temporal dynamics of inherent signal

Ø We need to capture latent dynamics in univariate time series
v Single dimension is inadequate for modeling the system
v We adopt the time-delay embedding to augment a state
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．

😢

Im

Re

frequency

decay rate

! !

∠	!!

eigenvalue !!

Interpretability of modes

(1 ≤ $ ≤ %!)

Inherent signal !(")
!(")

" − ℎ + 1

ℎ "(")ℎ

'"
'"

'" #(")
,

Self-dynamics factor set ((")

"

⇓

Hankel matrix

) ⇓

(a) 固有ダイナミクス集合 (i.e., D(i) = {Φ(i),Λ(i)})

Multivariate time series !

"

# ⋮
!(")

!($)

Regime parameter set $

,
#

#

"%$

Mixing matrix

,

#

#

"%$

Inherent signals %
#($)

#(")
"

⋮

Causal
relationship $

#(&)⇓ ⇓

(b) レジーム (i.e., θ = {W ,D(1), ...,D(d)})

図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．



Latent temporal dynamics of inherent signal

Ø We need to capture latent dynamics in univariate time series
v Single dimension is inadequate for modeling the system
v We adopt the time-delay embedding to augment a state

© 2025 Naoki Chihara et al. 17

Im

Re

frequency

decay rate

! !

∠	!!

eigenvalue !!

Interpretability of modes

(1 ≤ $ ≤ %!)

Inherent signal !(")
!(")

" − ℎ + 1

ℎ "(")ℎ

'"
'"

'" #(")
,

Self-dynamics factor set ((")

"
⇓

Hankel matrix

) ⇓

(a) 固有ダイナミクス集合 (i.e., D(i) = {Φ(i),Λ(i)})

Multivariate time series !

"

# ⋮
!(")

!($)

Regime parameter set $

,
#

#

"%$

Mixing matrix

,

#

#

"%$

Inherent signals %
#($)

#(")
"

⋮

Causal
relationship $

#(&)⇓ ⇓

(b) レジーム (i.e., θ = {W ,D(1), ...,D(d)})

図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．

😢

Im

Re

frequency

decay rate

! !

∠	!!

eigenvalue !!

Interpretability of modes

(1 ≤ $ ≤ %!)

Inherent signal !(")
!(")

" − ℎ + 1

ℎ "(")ℎ

'"
'"

'" #(")
,

Self-dynamics factor set ((")

"

⇓

Hankel matrix

) ⇓

(a) 固有ダイナミクス集合 (i.e., D(i) = {Φ(i),Λ(i)})

Multivariate time series !

"

# ⋮
!(")

!($)

Regime parameter set $

,
#

#

"%$

Mixing matrix

,

#

#

"%$

Inherent signals %
#($)

#(")
"

⋮

Causal
relationship $

#(&)⇓ ⇓

(b) レジーム (i.e., θ = {W ,D(1), ...,D(d)})

図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．Past history
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

Latent temporal dynamics of inherent signal

Ø The 𝑖-th inherent signal 𝒆 !  is given by the following equations
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b) レジーム (i.e., θ = {W ,D(1), ...,D(d)})

図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
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| | |
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
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g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))
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As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:
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a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )
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, 1 =

Im(log _ 9 )
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where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

Im

Re

frequency

decay rate

! !

∠	!!

eigenvalue !!

Interpretability of modes

(1 ≤ $ ≤ %!)

Inherent signal !(")
!(")

" − ℎ + 1

ℎ "(")ℎ

'"
'"

'" #(")
,

Self-dynamics factor set ((")

"

⇓

Hankel matrix

) ⇓

(a) 固有ダイナミクス集合 (i.e., D(i) = {Φ(i),Λ(i)})

Multivariate time series !

"

# ⋮
!(")

!($)

Regime parameter set $

,
#

#

"%$

Mixing matrix

,

#

#

"%$

Inherent signals %
#($)

#(")
"

⋮

Causal
relationship $

#(&)⇓ ⇓

(b) レジーム (i.e., θ = {W ,D(1), ...,D(d)})

図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
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である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ
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することなく埋め込み次元を選択できる．
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モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．
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(2)
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Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

Latent temporal dynamics of inherent signal

Ø The 𝑖-th inherent signal 𝒆 !  is given by the following equations
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’25, August 3–7, 2025, Toronto, Canada Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Im

Re

frequency

decay rate

! !

∠	!!

eigenvalue !!

Interpretability of modes

(1 ≤ $ ≤ %!)

Inherent signal !(")
!(")

" − ℎ + 1

ℎ "(")ℎ

'"
'"

'" #(")
,

Self-dynamics factor set ((")

"

⇓

Hankel matrix

) ⇓

(a) Self-dynamics factor set (i.e., D(8 ) = {�(8 ) ,⇤(8 ) })

Multivariate time series !

"

# ⋮
!(")

!($)

Regime parameter set $

,
#

#

"%$

Mixing matrix

,

#

#

"%$

Inherent signals %
#($)

#(")
"

⋮

Causal
relationship $

#(&)⇓ ⇓

(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b) レジーム (i.e., θ = {W ,D(1), ...,D(d)})

図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.
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servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)
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to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
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ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
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義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
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続いて，時系列データストリーム中の時間変化する因果関係
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法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5

Dynamical pattern in a single regime
Ø The single regime is governed by the following equations
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards

“Time-evolving”
causality

!

"!"" #

Future values 
(unknown)

Time "

Mode
Estimator

Regime
Creation

Current regime: $! ∈ &
!

insert new regime

Forecast   
!!-steps-ahead
future value

i.e., !(#! + %")

"! + (#

V!

!!
Regime set

Θ

" ""

#

Causal adjacency matrixCurrent window: ""

!

#!"
##!

##"

"(")"($)*
, , ⋮ ,

#"!
##!

##"

estimate

Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)
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forgetting matrix, based on the recursive least squares principle. In
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We now extract the latent temporal dynamics expressed as the
superposition of the modes from the 8-th univariate inherent signal
e (8 ) using the above method. We thus introduce a time-evolving
activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
point C for 8 2 {1, . . . ,3}. The following equations govern the 8-th
univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the observa-
tion projections that generate the 8-th univariate inherent signal
4 (8 ) (C) at each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern the single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������:B). LetB be a param-
eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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図 3: ModePlait のアルゴリズム概要図：逐次的に最新のデー
タ x(tc)を入力として受け取り，カレントウィンドウXc に対
するを最もよく表現する θc を探索する．その後，θc を用いて
因果隣接行列B を探索し，ls ステップ先の値 v(tc + ls)を予測
する．Xc 中に未知のパターンを検出した場合，新たなレジー
ムを推定し，レジームセットΘに追加する．
モデル 2. s(i)(t) を時刻 t の i 番目の固有信号 e(i)(t) のた
めの ki 次元の潜在状態，e(t) を時刻 t の d 次元の固有信号
(e(t) = {e(i)(t)}di=1)，v(t)を時刻 tの d次元の推定値とする．
レジームは次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t) (1 <= i <= d)

e(i)(t) = g−1(Φ(i)s(i)(t)) (1 <= i <= d)

v(t) = W−1e(t)

(3)

モデル 2のために，新たなパラメータである分離行列W を導
入する．これは，d個の固有信号間の関係性を表現し，因果関
係の特定のために重要な役割を果たす．W からB を特定する
ためのアルゴリズムについては 4. 2. 3節にて説明する．まとめ
ると，以下を得る．
定義 3 (レジーム：θ). θ = {W ,D(1), ...,D(d)}をレジームを
表現するパラメータ集合とする．ここで，W は因果隣接行列
B を生成するための基盤となる要素である．
最終的な目的は，複数のレジーム θ が時々刻々と遷移する
様子を捉えることである．なお，このレジームの遷移が因果関
係の時間変化を誘発する．時刻 t までの適切なレジーム数を
R とすると，時系列データストリーム X は R 個のレジーム
{θ1, ..., θR}によって要約される．これらを踏まえて，レジーム
セットおよび時間変化する因果関係を以下のように定義する．
定義 4 (レジームセット：Θ). 複数のレジームで構成されるモ
デルパラメータ集合Θ = {θ1, ..., θR}として定義し，レジーム
セットと呼ぶ．これは，時系列データストリーム全体の特徴的
な複数の時系列パターンを表現する．
定義 5 (時間変化する因果関係：B). 因果隣接行列の集合を
B = {B1, ...,BR} として定義し，時間変化する因果関係と呼
ぶ．ここで，Bi は i番目のレジーム θi に対応する因果隣接行
列である．

4 アルゴリズム
本章では，時間変化する因果関係 BおよびレジームセットΘ

を推定するための効率的なアルゴリズムを提案する．図 3 は，
提案アルゴリズムの概要図である．初めに，単一のレジームの
みを持つと仮定された多変量時系列データからレジームを算出
する効果的な方法を提示する．その後，複数の異なる特徴的な
時系列パターンを含む時系列データストリームに対して，B を
同定しながら，Θを逐次的に更新するアルゴリズムを説明する．
4. 1 RegimeCreation

初めに，レジーム θ = {W ,D(1), ...,D(d)} を推定するため
のアルゴリズム RegimeCreationを提案する．このアルゴリ
ズムは，以下の 2つの主要な手順から構成される．(i) X を分
離行列W と固有信号 E に分解する．(ii) 式 (2)に従って，d

個の固有ダイナミクスセット {D(1), ...,D(d)} を計算する．最
適な因果関係を捉えるために，独立成分分析 (ICA) を使用し
てX の分解を分解する．次に，i番目の固有ダイナミクスセッ
ト D(i) の計算に関しては，ハンケル行列H(i) に基づく以下の
データ行列を使用する．

L(i) =
[
g(e(i)(h+ 1)) · · · g(e(i)(t))

]
∈ Rh×(t−h)

R(i) =
[
g(e(i)(h)) · · · g(e(i)(t− 1))

]
∈ Rh×(t−h)

これを基に，本論文では以下の重み付き損失関数を使用する．
min
A

t−1∑

t′=h

µ2(t−1−t′)||g(e(i)(t′ + 1))−A(i)g(e(i)(t
′))||22

=min
A

||(L(i) −A(i)R(i))M ||2F

(4)

ここで，A(i) は遷移行列であり，これは固有値分解が与える
モード Φ(i) と対応する固有値分解 Λ(i) により構成される．ま
た，M = diag(µt−h−1, ..., µ0) ∈ R(t−h)×(t−h) は忘却行列で
ある．これは逐次最小二乗法の原理に基づいている．加えて，
Koopman作用素論によると，古典的な線形時不変システムの
モード分解とは異なり，遷移行列は線形であるが非線形動的シ
ステムにも適用可能である．まとめると，以下を得る．

I. 独立性分分析を使用してX = W−1E を計算する．
II. 式 (1)に従い，ハンケル行列H(i) を構成する．
III. データ行列のペア (L(i),R(i))を計算する.

IV. 特異値分解 (SVD) を使用して R(i)M = U(i)Σ(i)V
⊤
(i)を計算する．特異値の数は [49]に従って決定する．

V. 遷移行列 A(i) を左特異値ベクトル U (i) が張る ki 次元
部分空間に射影する．
Ã(i) = U⊤

(i)A(i)U(i) = U⊤
(i)L(i)MV(i)Σ

−1
(i) ∈ Rki×ki

VI. 固有値分解 Ã(i)Z(i) = Z(i)Λ(i) を計算する．ここで，
U (i) は直交行列であるため，固有値行列 Λ(i) はA(i) の
支配的な ki 個の固有値と一致する．

VII. モード Φ(i) = U(i)Z(i) を計算する．
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Modeling Time-evolving Causality over Data Streams KDD ’25, August 3–7, 2025, Toronto, Canada

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5

Dynamical pattern in a single regime
Ø The single regime is governed by the following equations
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5
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We now extract the latent temporal dynamics expressed as the
superposition of the modes from the 8-th univariate inherent signal
e (8 ) using the above method. We thus introduce a time-evolving
activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
point C for 8 2 {1, . . . ,3}. The following equations govern the 8-th
univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the observa-
tion projections that generate the 8-th univariate inherent signal
4 (8 ) (C) at each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern the single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������:B). LetB be a param-
eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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We now extract the latent temporal dynamics expressed as the
superposition of the modes from the 8-th univariate inherent signal
e (8 ) using the above method. We thus introduce a time-evolving
activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
point C for 8 2 {1, . . . ,3}. The following equations govern the 8-th
univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the observa-
tion projections that generate the 8-th univariate inherent signal
4 (8 ) (C) at each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern the single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������:B). LetB be a param-
eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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We now extract the latent temporal dynamics expressed as the
superposition of the modes from the 8-th univariate inherent signal
e (8 ) using the above method. We thus introduce a time-evolving
activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
point C for 8 2 {1, . . . ,3}. The following equations govern the 8-th
univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the observa-
tion projections that generate the 8-th univariate inherent signal
4 (8 ) (C) at each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern the single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������:B). LetB be a param-
eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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図 3: ModePlait のアルゴリズム概要図：逐次的に最新のデー
タ x(tc)を入力として受け取り，カレントウィンドウXc に対
するを最もよく表現する θc を探索する．その後，θc を用いて
因果隣接行列B を探索し，ls ステップ先の値 v(tc + ls)を予測
する．Xc 中に未知のパターンを検出した場合，新たなレジー
ムを推定し，レジームセットΘに追加する．
モデル 2. s(i)(t) を時刻 t の i 番目の固有信号 e(i)(t) のた
めの ki 次元の潜在状態，e(t) を時刻 t の d 次元の固有信号
(e(t) = {e(i)(t)}di=1)，v(t)を時刻 tの d次元の推定値とする．
レジームは次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t) (1 <= i <= d)

e(i)(t) = g−1(Φ(i)s(i)(t)) (1 <= i <= d)

v(t) = W−1e(t)

(3)

モデル 2のために，新たなパラメータである分離行列W を導
入する．これは，d個の固有信号間の関係性を表現し，因果関
係の特定のために重要な役割を果たす．W からB を特定する
ためのアルゴリズムについては 4. 2. 3節にて説明する．まとめ
ると，以下を得る．
定義 3 (レジーム：θ). θ = {W ,D(1), ...,D(d)}をレジームを
表現するパラメータ集合とする．ここで，W は因果隣接行列
B を生成するための基盤となる要素である．
最終的な目的は，複数のレジーム θ が時々刻々と遷移する
様子を捉えることである．なお，このレジームの遷移が因果関
係の時間変化を誘発する．時刻 t までの適切なレジーム数を
R とすると，時系列データストリーム X は R 個のレジーム
{θ1, ..., θR}によって要約される．これらを踏まえて，レジーム
セットおよび時間変化する因果関係を以下のように定義する．
定義 4 (レジームセット：Θ). 複数のレジームで構成されるモ
デルパラメータ集合Θ = {θ1, ..., θR}として定義し，レジーム
セットと呼ぶ．これは，時系列データストリーム全体の特徴的
な複数の時系列パターンを表現する．
定義 5 (時間変化する因果関係：B). 因果隣接行列の集合を
B = {B1, ...,BR} として定義し，時間変化する因果関係と呼
ぶ．ここで，Bi は i番目のレジーム θi に対応する因果隣接行
列である．

4 アルゴリズム
本章では，時間変化する因果関係 BおよびレジームセットΘ

を推定するための効率的なアルゴリズムを提案する．図 3 は，
提案アルゴリズムの概要図である．初めに，単一のレジームの
みを持つと仮定された多変量時系列データからレジームを算出
する効果的な方法を提示する．その後，複数の異なる特徴的な
時系列パターンを含む時系列データストリームに対して，B を
同定しながら，Θを逐次的に更新するアルゴリズムを説明する．
4. 1 RegimeCreation

初めに，レジーム θ = {W ,D(1), ...,D(d)} を推定するため
のアルゴリズム RegimeCreationを提案する．このアルゴリ
ズムは，以下の 2つの主要な手順から構成される．(i) X を分
離行列W と固有信号 E に分解する．(ii) 式 (2)に従って，d

個の固有ダイナミクスセット {D(1), ...,D(d)} を計算する．最
適な因果関係を捉えるために，独立成分分析 (ICA) を使用し
てX の分解を分解する．次に，i番目の固有ダイナミクスセッ
ト D(i) の計算に関しては，ハンケル行列H(i) に基づく以下の
データ行列を使用する．

L(i) =
[
g(e(i)(h+ 1)) · · · g(e(i)(t))

]
∈ Rh×(t−h)

R(i) =
[
g(e(i)(h)) · · · g(e(i)(t− 1))

]
∈ Rh×(t−h)

これを基に，本論文では以下の重み付き損失関数を使用する．
min
A

t−1∑

t′=h

µ2(t−1−t′)||g(e(i)(t′ + 1))−A(i)g(e(i)(t
′))||22

=min
A

||(L(i) −A(i)R(i))M ||2F

(4)

ここで，A(i) は遷移行列であり，これは固有値分解が与える
モード Φ(i) と対応する固有値分解 Λ(i) により構成される．ま
た，M = diag(µt−h−1, ..., µ0) ∈ R(t−h)×(t−h) は忘却行列で
ある．これは逐次最小二乗法の原理に基づいている．加えて，
Koopman作用素論によると，古典的な線形時不変システムの
モード分解とは異なり，遷移行列は線形であるが非線形動的シ
ステムにも適用可能である．まとめると，以下を得る．

I. 独立性分分析を使用してX = W−1E を計算する．
II. 式 (1)に従い，ハンケル行列H(i) を構成する．
III. データ行列のペア (L(i),R(i))を計算する.

IV. 特異値分解 (SVD) を使用して R(i)M = U(i)Σ(i)V
⊤
(i)を計算する．特異値の数は [49]に従って決定する．

V. 遷移行列 A(i) を左特異値ベクトル U (i) が張る ki 次元
部分空間に射影する．
Ã(i) = U⊤

(i)A(i)U(i) = U⊤
(i)L(i)MV(i)Σ

−1
(i) ∈ Rki×ki

VI. 固有値分解 Ã(i)Z(i) = Z(i)Λ(i) を計算する．ここで，
U (i) は直交行列であるため，固有値行列 Λ(i) はA(i) の
支配的な ki 個の固有値と一致する．

VII. モード Φ(i) = U(i)Z(i) を計算する．
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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Dynamical pattern in a single regime
Ø The single regime is governed by the following equations
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
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We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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We now extract the latent temporal dynamics expressed as the
superposition of the modes from the 8-th univariate inherent signal
e (8 ) using the above method. We thus introduce a time-evolving
activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
point C for 8 2 {1, . . . ,3}. The following equations govern the 8-th
univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the observa-
tion projections that generate the 8-th univariate inherent signal
4 (8 ) (C) at each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern the single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������:B). LetB be a param-
eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
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where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
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a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :
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where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern the single regime,
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In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.
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eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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We now extract the latent temporal dynamics expressed as the
superposition of the modes from the 8-th univariate inherent signal
e (8 ) using the above method. We thus introduce a time-evolving
activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
point C for 8 2 {1, . . . ,3}. The following equations govern the 8-th
univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the observa-
tion projections that generate the 8-th univariate inherent signal
4 (8 ) (C) at each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.
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erating the estimated vector v (C) 2 R3 at time point C . Also, we need
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In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:
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eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
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図 3: ModePlait のアルゴリズム概要図：逐次的に最新のデー
タ x(tc)を入力として受け取り，カレントウィンドウXc に対
するを最もよく表現する θc を探索する．その後，θc を用いて
因果隣接行列B を探索し，ls ステップ先の値 v(tc + ls)を予測
する．Xc 中に未知のパターンを検出した場合，新たなレジー
ムを推定し，レジームセットΘに追加する．
モデル 2. s(i)(t) を時刻 t の i 番目の固有信号 e(i)(t) のた
めの ki 次元の潜在状態，e(t) を時刻 t の d 次元の固有信号
(e(t) = {e(i)(t)}di=1)，v(t)を時刻 tの d次元の推定値とする．
レジームは次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t) (1 <= i <= d)

e(i)(t) = g−1(Φ(i)s(i)(t)) (1 <= i <= d)

v(t) = W−1e(t)

(3)

モデル 2のために，新たなパラメータである分離行列W を導
入する．これは，d個の固有信号間の関係性を表現し，因果関
係の特定のために重要な役割を果たす．W からB を特定する
ためのアルゴリズムについては 4. 2. 3節にて説明する．まとめ
ると，以下を得る．
定義 3 (レジーム：θ). θ = {W ,D(1), ...,D(d)}をレジームを
表現するパラメータ集合とする．ここで，W は因果隣接行列
B を生成するための基盤となる要素である．
最終的な目的は，複数のレジーム θ が時々刻々と遷移する
様子を捉えることである．なお，このレジームの遷移が因果関
係の時間変化を誘発する．時刻 t までの適切なレジーム数を
R とすると，時系列データストリーム X は R 個のレジーム
{θ1, ..., θR}によって要約される．これらを踏まえて，レジーム
セットおよび時間変化する因果関係を以下のように定義する．
定義 4 (レジームセット：Θ). 複数のレジームで構成されるモ
デルパラメータ集合Θ = {θ1, ..., θR}として定義し，レジーム
セットと呼ぶ．これは，時系列データストリーム全体の特徴的
な複数の時系列パターンを表現する．
定義 5 (時間変化する因果関係：B). 因果隣接行列の集合を
B = {B1, ...,BR} として定義し，時間変化する因果関係と呼
ぶ．ここで，Bi は i番目のレジーム θi に対応する因果隣接行
列である．

4 アルゴリズム
本章では，時間変化する因果関係 BおよびレジームセットΘ

を推定するための効率的なアルゴリズムを提案する．図 3 は，
提案アルゴリズムの概要図である．初めに，単一のレジームの
みを持つと仮定された多変量時系列データからレジームを算出
する効果的な方法を提示する．その後，複数の異なる特徴的な
時系列パターンを含む時系列データストリームに対して，B を
同定しながら，Θを逐次的に更新するアルゴリズムを説明する．
4. 1 RegimeCreation

初めに，レジーム θ = {W ,D(1), ...,D(d)} を推定するため
のアルゴリズム RegimeCreationを提案する．このアルゴリ
ズムは，以下の 2つの主要な手順から構成される．(i) X を分
離行列W と固有信号 E に分解する．(ii) 式 (2)に従って，d

個の固有ダイナミクスセット {D(1), ...,D(d)} を計算する．最
適な因果関係を捉えるために，独立成分分析 (ICA) を使用し
てX の分解を分解する．次に，i番目の固有ダイナミクスセッ
ト D(i) の計算に関しては，ハンケル行列H(i) に基づく以下の
データ行列を使用する．

L(i) =
[
g(e(i)(h+ 1)) · · · g(e(i)(t))

]
∈ Rh×(t−h)

R(i) =
[
g(e(i)(h)) · · · g(e(i)(t− 1))

]
∈ Rh×(t−h)

これを基に，本論文では以下の重み付き損失関数を使用する．
min
A

t−1∑

t′=h

µ2(t−1−t′)||g(e(i)(t′ + 1))−A(i)g(e(i)(t
′))||22

=min
A

||(L(i) −A(i)R(i))M ||2F

(4)

ここで，A(i) は遷移行列であり，これは固有値分解が与える
モード Φ(i) と対応する固有値分解 Λ(i) により構成される．ま
た，M = diag(µt−h−1, ..., µ0) ∈ R(t−h)×(t−h) は忘却行列で
ある．これは逐次最小二乗法の原理に基づいている．加えて，
Koopman作用素論によると，古典的な線形時不変システムの
モード分解とは異なり，遷移行列は線形であるが非線形動的シ
ステムにも適用可能である．まとめると，以下を得る．

I. 独立性分分析を使用してX = W−1E を計算する．
II. 式 (1)に従い，ハンケル行列H(i) を構成する．
III. データ行列のペア (L(i),R(i))を計算する.

IV. 特異値分解 (SVD) を使用して R(i)M = U(i)Σ(i)V
⊤
(i)を計算する．特異値の数は [49]に従って決定する．

V. 遷移行列 A(i) を左特異値ベクトル U (i) が張る ki 次元
部分空間に射影する．
Ã(i) = U⊤

(i)A(i)U(i) = U⊤
(i)L(i)MV(i)Σ

−1
(i) ∈ Rki×ki

VI. 固有値分解 Ã(i)Z(i) = Z(i)Λ(i) を計算する．ここで，
U (i) は直交行列であるため，固有値行列 Λ(i) はA(i) の
支配的な ki 個の固有値と一致する．

VII. モード Φ(i) = U(i)Z(i) を計算する．
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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Transitions of regimes
Ø The transitions of regimes in a multivariate data stream

v Regime set 𝚯 = 𝜃", 𝜃#, … , 𝜃$ 	 𝜃! = 𝑾,𝒟("), … , 𝒟(')

© 2025 Naoki Chihara et al. 25

𝑑

Data stream 𝑿

Time 𝑡



Outline

q Background

q Proposed Model

q Optimization Algorithm

q Experiments

q Conclusion

© 2025 Naoki Chihara et al. 26



Optimization Algorithm
Proposed algorithm consists of the following components
Ø ModeEstimator
Ø RegimeCreation
Ø ModeGenerator
Ø RegimeUpdater
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Optimization Algorithm
Proposed algorithm consists of the following components
Ø ModeEstimator
v Estimate ℱ and 𝒞 which

appropriately describes the
current dynamical pattern

Ø RegimeCreation
Ø ModeGenerator
Ø RegimeUpdater
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Optimization Algorithm
Proposed algorithm consists of the following components
Ø ModeEstimator
Ø RegimeCreation
v When it encounters

an unknown pattern in 𝑿&,
it estimates a new regime 𝜽

Ø ModeGenerator
Ø RegimeUpdater
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Optimization Algorithm
Proposed algorithm consists of the following components
Ø ModeEstimator
Ø RegimeCreation
Ø ModeGenerator
v it identifies 𝑩 and forecasts

𝑙'-steps-ahead future value
using 𝒞

Ø RegimeUpdater
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Optimization Algorithm
Proposed algorithm consists of the following components
Ø ModeEstimator
Ø RegimeCreation
Ø ModeGenerator
Ø RegimeUpdater
v it updates 𝜽𝒄 using 𝝎 ∈ 𝒞 and

the most recent value 𝒙 𝑡&
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Ø Update demixing matrix 𝑾 

v It is based on adaptive filtering
v Ensure time and memory efficiency

Ø Update self-dynamics factor set 𝒟(") 

Details in paper

定理 1. RegimeCreation の計算量は O(N(d2 + h2) + k3)

である．ただし，k = maxi(ki)である．証明は [24] を参照．
4. 2 ストリーミングアルゴリズム
続いて，提案モデルを用いてストリーミング方式で分離行列

W ∈ θ から因果隣接行列B を特定し，将来を予測する方法を
提案する．本題に入る前に，いくつかの重要な概念を定義する．
定義 6 (更新用パラメータ: ω). レジーム θ を更新するための
パラメータ集合を ω = {{P(i)}di=1, {ϵ(i)}di=1}と定義し，更新
用パラメータと呼ぶ．ただし，P(i) = (R(i)MR⊤

(i))
−1，ϵ(i) は

エネルギーである.

定義 7 (モデルパラメータ集合: F). F = {Θ,Ω} を Mod-

ePlait のパラメータ集合とする．ただし，Θ および Ω は
R 個のレジーム Θ = {θ1, ..., θR}，更新用パラメータ集合
Ω = {ω1, ...,ωR}によって構成される．
これらの定義に基づくと，問題定義は以下のとおりである．
問題 1. 時刻 tc における最新の値 x(tc)として，時系列データ
ストリームX が与えられたとき，
• 最適なモデルパラメータ集合 F = {Θ,Ω}を発見する，
• 時間変化する因果関係 B を抽出する，
• ls ステップ先の値 v(tc + ls)を予測する．
ここで，カレントウィンドウ Xc = X[tm : tc] のレジームを
θc と，θc に対応する更新パラメータを ωc と呼ぶ．さらに，ls

ステップ先の値 v(tc + ls)を予測するには，現在の時刻 tc での
潜在ベクトル S(tc)が必要であるため，これを Sc

en として保持
する．要約すると，提案アルゴリズムは，これらをモデル候補
C = {θc,ωc,Sc

en}として保持する．
4. 2. 1 全 体 像
ModePlait は以下のアルゴリズムによって構成される．

• ModeEstimator: 最適なモデルパラメータ集合 F およ
びモデル候補 C を推定する．

• ModeGenerator: モデル候補 C より，ls ステップ先の
値 v(tc + ls)を予測し，因果隣接行列 B を抽出する．

• RegimeUpdater: 現在の更新用パラメータ ωc と最新の
値 x(tc)を用いて，現在のレジーム θc を更新する．

4. 2. 2 ModeEstimator

現在の時刻 tc の観測値 x(tc) が与えられたとき，最初に
モデルパラメータ集合 F およびカレントウィンドウ Xc を
最も表現するモデル候補 C を逐次的に更新する．ここで，
f(Xc;Sc

0,θ
c) はカレントウィンドウ Xc と推定ウィンドウ

V c の誤差を最小化することによって，最適なモデルパラメー
タ集合を算出する（i.e., f(Xc;Sc

0,θ
c) =

∑tc
t=tm+h−1 ||x(t)−

v(t)||）．式 (3)に基づくと，Sc
0 を計算する最も簡便な方法は

{Φ†
(i)g(e(i)(tm + h− 1))}di=1 を用いることである．しかし，過

度なノイズが含まれた初期値は適切な予測が達成できない．こ
れを対処するために，LM (Levenberg-Marquardt) アルゴリ
ズム [50]を使用して Sc

0 を最適化し，観測におけるノイズの影
響を除去する．まとめると，ModeEstimator は次の手順に

従う．
I. カレントウィンドウ Xc と現在のレジーム θc 間の誤差を
最小化するように初期値 Sc

0 を最適化する
II. f(Xc;Sc

0,θ
c) > τ のとき，最適なレジーム θ ∈ Θを得る．

III. f(Xc;Sc
0,θ

c) > τ のとき，RegimeCreationを用いて新
たなレジームを生成し，レジームセットΘに追加する．

4. 2. 3 ModeGenerator

続いて，逐次的に因果隣接行列 B を抽出し，ls ステップ先
の値 v(tc + ls)を予測するアルゴリズムModeGenerator を
提案する．予測については，式 (3)に従って v(tc + ls)を推定
する．一方で，因果隣接行列 B については前述のとおり分離
行列W ∈ θc から抽出する．独立成分分析で得られる混合行列
（分離行列の逆行列）には独立成分の順序および尺度という 2

つの主要な不定性が存在する．しかし，最適な因果隣接行列を
抽出するためには，これらの問題を解決しなければならない．
上記の不定性を解消し，因果隣接行列 B を特定するアルゴリ
ズムは以下のとおりである．

I. W の行を並べ替えることで，主対角線上にゼロを含ま
ない行列 W̃ を得る．

II. W̃ の各行を対応する対角要素で割ることで，主対角線
上にすべて 1を持つ新たな行列 W̃ ′ を得る．

III. B の推定値を B̂ = I − W̃ ′ によって算出する．
IV. 最後に，因果順序を得るために，B̂ の置換行列K を用

いて B̃ = KB̂K⊤ を計算する．これは，B̃ の上三角行
列の要素の総和を最小化する．

定理 2. ModePlaitにおける因果探索は，ModeGenerator

での因果隣接行列B の抽出と同値である．証明は [24] を参照．
4. 2. 4 RegimeUpdater

最後に，既存のレジーム θの表現力を向上させるための最新
の値 x(tc)を使用したレジームのパラメータの更新方法につい
て説明する．RegimeUpdater は主に，(i) 分離行列W の更
新，および (ii) 固有ダイナミクス集合 D の更新，の 2つの手
順から構成される．手順 (i)では，適応フィルタに基づいたア
ルゴリズムを使用する [51, 52]．これは，計算とメモリの両方
の観点で非常に効率的である．更新手順は以下のとおりである．

I. 現在時刻 tc において，更新前のW の i 番目の行ベク
トル wi に x(tc) を射影することで，i 番目の固有信号
g(e(i)(tc))を算出する．

II. g(e(i)(tc))を用いて，復元誤差およびエネルギー ϵ(i) を
計算する．

III. 誤差およびエネルギー ϵ(i) を用いて wi を更新する．
一方で，手順 (ii)では以下の再帰式を用いる．

Anew
(i) = Aprev

(i) + (g(e(i)(tc))−Aprev
(i) g(e(i)(tc − 1)))γ(i)

γ(i) =
g(e(i)(tc − 1))⊤P prev

(i)

µ+ g(e(i)(tc − 1))⊤P prev
(i) g(e(i)(tc − 1))

Pnew
(i) =

1

µ
(P prev

(i) − P prev
(i) g(e(i)(tc − 1))γ(i))

(5)

ここで，Φ(i) および Λ(i) はそれぞれA(i) の固有ベクトル，固



Theoretical Analysis
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Details in paper

Ø LEMMA 2 (CAUSAL IDENTIFIABILITY).
Causal discovery in MODEPLAIT is equivalent to finding the causal 
adjacency matrix 𝑩 in MODEGENERATOR.
v It theoretically discovers causal relationships

Ø LEMMA 3 (TIME COMPLEXITY OF MODEPLAIT).
The time complexity of MODEPLAIT is at least 𝑂(𝑁∑! 𝑘! + 𝑑ℎ#) and at most 
𝑂(𝑅𝑁∑! 𝑘! +𝑁 𝑑# + ℎ# + 𝑘#) per process.
v It requires only constant time w.r.t. the entire data stream length
v It is practical for semi-infinite data streams



Outline

q Background

q Proposed Model

q Optimization Algorithm

q Experiments

q Conclusion
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Experiments
We aim to evaluate that ModePlait has ...

Ø Q1. Effectiveness
How well does it find the time-evolving causality?

Ø Q2. Accuracy
How accurately does it discover time-evolving causality and forecast 
future values?

Ø Q3. Scalability
How does it scale in terms of computational time?

© 2025 Naoki Chihara et al. 34



Experimental Setup
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Ø 12 baselines
v CASPER
v DARING
v NoCurl
v NO-MLP
v NOTEARS
v LiNGAM
v GES
v TimesNet
v PatchTST
v DeepAR
v OrbitMap
v ARIMA

7 models for 
causal discovery

5 models for time 
series forecasting

Ø 5 datasets
q Synthetics
v We used it for the quantitative 

evaluation of causal discovery
v 5 different temporal sequences

q Real-world datasets
v Various domains datasets

• Number of COVID-19 infections
• Web-search counts
• Sensor data from motion captures



Q1. Effectiveness
Ø Preview of our results from an epidemiological data stream

v It consists of the number of COVID-19 infections in five countries

Health officials report a new 
lineage of the coronavirus in 
South Africa

longest and toughest 
lockdowns in Shanghai

Base of arrows is 
cause, head is effect

Accurate forecast based 
on the current distinct 
dynamical patterns
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.



Q1. Effectiveness
Ø Preview of our results from an epidemiological data stream

v It consists of the number of COVID-19 infections in five countries

longest and toughest 
lockdowns in Shanghai

Base of arrows is 
cause, head is effect

Accurate forecast based 
on the current distinct 
dynamical patterns
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Table 3: Causal discovering results with multiple temporal sequences to encompass various types of real-world scenarios.

Models M���P���� CASPER DARING NoCurl NO-MLP NOTEARS LiNGAM GES

Metrics SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID

1, 2, 1 3.82 4.94 5.58 7.25 5.75 8.58 6.31 9.90 6.36 8.74 5.03 9.95 7.13 8.23 7.49 11.7
1, 2, 3 4.48 6.51 5.97 8.44 5.81 9.17 6.13 9.51 6.44 8.77 5.69 9.56 6.79 7.33 7.03 10.1
1, 2, 2, 1 4.32 5.88 5.41 8.41 6.54 9.17 6.69 10.0 6.55 8.72 5.23 9.54 7.12 8.65 7.08 9.77
1, 2, 3, 4 4.21 5.76 6.22 8.33 6.12 9.58 6.10 9.61 6.62 8.87 5.73 10.1 7.10 8.50 7.29 11.3
1, 2, 3, 2, 1 4.50 6.11 6.02 8.28 5.45 7.77 6.20 9.83 6.56 8.83 5.57 9.11 7.46 8.05 7.74 12.1

Table 4: Multivariate forecasting results for both synthetic and real-world datasets. We used forecasting steps ;B 2 {5, 10, 15}.

Models M���P���� TimesNet PatchTST DeepAR OrbitMap ARIMA

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

#0 synthetic 5 0.722 0.528 0.805 0.578 0.768 0.581 1.043 0.821 0.826 0.567 0.962 0.748
10 0.829 0.607 0.862 0.655 0.898 0.649 1.073 0.849 0.896 0.646 0.966 0.752
15 0.923 0.686 0.940 0.699 0.973 0.706 1.137 0.854 0.966 0.710 0.982 0.765

#1 covid19 5 0.588 0.268 0.659 0.314 0.640 0.299 1.241 0.691 1.117 0.646 1.259 0.675
10 0.740 0.361 0.841 0.410 1.053 0.523 1.255 0.693 1.353 0.784 1.260 0.687
15 0.932 0.461 1.026 0.516 1.309 0.686 1.265 0.690 1.351 0.792 1.277 0.718

#2 web-search 5 0.573 0.442 0.626 0.469 0.719 0.551 1.255 1.024 0.919 0.640 1.038 0.981
10 0.620 0.481 0.697 0.514 0.789 0.604 1.273 1.044 0.960 0.717 1.247 1.037
15 0.646 0.505 0.701 0.527 0.742 0.571 1.300 1.069 0.828 0.631 1.038 0.795

#3 chicken-dance 5 0.353 0.221 0.759 0.490 0.492 0.303 0.890 0.767 0.508 0.316 2.037 1.742
10 0.511 0.325 0.843 0.564 0.838 0.535 0.886 0.753 0.730 0.476 1.863 1.530
15 0.653 0.419 0.883 0.592 0.972 0.654 0.862 0.718 0.903 0.565 1.792 1.481

#4 exercise 5 0.309 0.177 0.471 0.275 0.465 0.304 0.408 0.290 0.424 0.275 1.003 0.748
10 0.501 0.309 0.630 0.381 0.789 0.518 0.509 0.382 0.616 0.377 1.104 0.814
15 0.687 0.433 0.786 0.505 1.147 0.758 0.676 0.475 0.691 0.434 1.126 0.901

• (#2) web-search: consists of web-search counts collected over
ten years related to beer queries on Google [3].

• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [1] and consist of four dimensional
vectors (left/right legs and arms).

We compared our algorithm with the following seven baselines for
causal discovery, namely CASPER [34], DARING [26], NoCurl [58],
NOTEARS-MLP (NO-MLP) [61], NOTEARS [60], LiNGAM [50],
and GES [10]. Besides, we also compared with the �ve following
competitors for forecasting, namely TimesNet [56], PatchTST [41],
DeepAR [47], OrbitMap [37], and ARIMA [7]. Details regarding the
experimental settings are also provided in Appendix B.1.
Q1. E�ectiveness.We �rst demonstrated how e�ectivelyM����
P���� discovers the time-evolving causality and forecasts future
values in a streaming fashion using the epidemiological data stream
(i.e., #1 covid19). Recall that Figure 1 showsM���P���� modeling
and forecasting results. Figure 1 (a/b) shows graphical representa-
tions of the causal adjacency matrix H and the eigenvalues ⇤. Most
importantly, the causal relationships evolve over time in accordance
with the transitions of distinct dynamical patterns in the inherent
signals K .M���P���� can continuously detect new actual causative
events around the world (e.g., the discovery of a new lineage of the
coronavirus in South Africa, the abrupt increase in coronavirus in-
fections in the United States, and the strict, long-term lockdown in

Shanghai). Figure 1 (c) shows stream forecasting results. There has
been multiple distinct patterns (e.g., a rapid decrease in infections
numbers in the Republic of South Africa),M���P���� adaptively
captures the exponential patterns and forecasts future values close
to the originals.
Q2-1. Causal discovering accuracy. We next showed how ac-
curatelyM���P���� can discover the time-evolving causality. We
reported the structural Hamming distance (SHD) and the structural
intervention distance (SID) [45]. SHD quanti�es the di�erence in
the causal adjacency matrix by counting missing, extra, and re-
versed edges and SID is particularly suited for evaluating causal
discovering accuracy since it counts the number of couples (8, 9)
such that the interventional distribution ? (G 9 | do(-8 = Ḡ)) would
be miscalculated if we used the estimated causal adjacency ma-
trix. Both metrics should be lower to represent better estimated
adjacency matrix. Table 3 shows the causal discovering results of
M���P���� and its baselines for various synthetic datasets, where
the best and second-best levels of performance are shown in bold
and underlined, respectively. Our method outperformed all base-
lines for every temporal sequence, which is consistent with the
analysis provided in Lemma 2. This is because none of the competi-
tors can handle the time-evolving causality in data streams.
Q2-2. Forecasting accuracy. We evaluated the quality of M���
�P���� in terms of ;B -steps-ahead forecasting accuracy. For this
evaluation, we adopted the root mean square error (RMSE) and the

“How accurately does ModePlait
discover time-evolving causality in a data stream?" 



“How well does ModePlait forecast in a streaming fashion?” 
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Table 3: Causal discovering results with multiple temporal sequences to encompass various types of real-world scenarios.

Models M���P���� CASPER DARING NoCurl NO-MLP NOTEARS LiNGAM GES

Metrics SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID

1, 2, 1 3.82 4.94 5.58 7.25 5.75 8.58 6.31 9.90 6.36 8.74 5.03 9.95 7.13 8.23 7.49 11.7
1, 2, 3 4.48 6.51 5.97 8.44 5.81 9.17 6.13 9.51 6.44 8.77 5.69 9.56 6.79 7.33 7.03 10.1
1, 2, 2, 1 4.32 5.88 5.41 8.41 6.54 9.17 6.69 10.0 6.55 8.72 5.23 9.54 7.12 8.65 7.08 9.77
1, 2, 3, 4 4.21 5.76 6.22 8.33 6.12 9.58 6.10 9.61 6.62 8.87 5.73 10.1 7.10 8.50 7.29 11.3
1, 2, 3, 2, 1 4.50 6.11 6.02 8.28 5.45 7.77 6.20 9.83 6.56 8.83 5.57 9.11 7.46 8.05 7.74 12.1

Table 4: Multivariate forecasting results for both synthetic and real-world datasets. We used forecasting steps ;B 2 {5, 10, 15}.

Models M���P���� TimesNet PatchTST DeepAR OrbitMap ARIMA

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

#0 synthetic 5 0.722 0.528 0.805 0.578 0.768 0.581 1.043 0.821 0.826 0.567 0.962 0.748
10 0.829 0.607 0.862 0.655 0.898 0.649 1.073 0.849 0.896 0.646 0.966 0.752
15 0.923 0.686 0.940 0.699 0.973 0.706 1.137 0.854 0.966 0.710 0.982 0.765

#1 covid19 5 0.588 0.268 0.659 0.314 0.640 0.299 1.241 0.691 1.117 0.646 1.259 0.675
10 0.740 0.361 0.841 0.410 1.053 0.523 1.255 0.693 1.353 0.784 1.260 0.687
15 0.932 0.461 1.026 0.516 1.309 0.686 1.265 0.690 1.351 0.792 1.277 0.718

#2 web-search 5 0.573 0.442 0.626 0.469 0.719 0.551 1.255 1.024 0.919 0.640 1.038 0.981
10 0.620 0.481 0.697 0.514 0.789 0.604 1.273 1.044 0.960 0.717 1.247 1.037
15 0.646 0.505 0.701 0.527 0.742 0.571 1.300 1.069 0.828 0.631 1.038 0.795

#3 chicken-dance 5 0.353 0.221 0.759 0.490 0.492 0.303 0.890 0.767 0.508 0.316 2.037 1.742
10 0.511 0.325 0.843 0.564 0.838 0.535 0.886 0.753 0.730 0.476 1.863 1.530
15 0.653 0.419 0.883 0.592 0.972 0.654 0.862 0.718 0.903 0.565 1.792 1.481

#4 exercise 5 0.309 0.177 0.471 0.275 0.465 0.304 0.408 0.290 0.424 0.275 1.003 0.748
10 0.501 0.309 0.630 0.381 0.789 0.518 0.509 0.382 0.616 0.377 1.104 0.814
15 0.687 0.433 0.786 0.505 1.147 0.758 0.676 0.475 0.691 0.434 1.126 0.901

• (#2) web-search: consists of web-search counts collected over
ten years related to beer queries on Google [3].

• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [1] and consist of four dimensional
vectors (left/right legs and arms).

We compared our algorithm with the following seven baselines for
causal discovery, namely CASPER [34], DARING [26], NoCurl [58],
NOTEARS-MLP (NO-MLP) [61], NOTEARS [60], LiNGAM [50],
and GES [10]. Besides, we also compared with the �ve following
competitors for forecasting, namely TimesNet [56], PatchTST [41],
DeepAR [47], OrbitMap [37], and ARIMA [7]. Details regarding the
experimental settings are also provided in Appendix B.1.
Q1. E�ectiveness.We �rst demonstrated how e�ectivelyM����
P���� discovers the time-evolving causality and forecasts future
values in a streaming fashion using the epidemiological data stream
(i.e., #1 covid19). Recall that Figure 1 showsM���P���� modeling
and forecasting results. Figure 1 (a/b) shows graphical representa-
tions of the causal adjacency matrix H and the eigenvalues ⇤. Most
importantly, the causal relationships evolve over time in accordance
with the transitions of distinct dynamical patterns in the inherent
signals K .M���P���� can continuously detect new actual causative
events around the world (e.g., the discovery of a new lineage of the
coronavirus in South Africa, the abrupt increase in coronavirus in-
fections in the United States, and the strict, long-term lockdown in

Shanghai). Figure 1 (c) shows stream forecasting results. There has
been multiple distinct patterns (e.g., a rapid decrease in infections
numbers in the Republic of South Africa),M���P���� adaptively
captures the exponential patterns and forecasts future values close
to the originals.
Q2-1. Causal discovering accuracy. We next showed how ac-
curatelyM���P���� can discover the time-evolving causality. We
reported the structural Hamming distance (SHD) and the structural
intervention distance (SID) [45]. SHD quanti�es the di�erence in
the causal adjacency matrix by counting missing, extra, and re-
versed edges and SID is particularly suited for evaluating causal
discovering accuracy since it counts the number of couples (8, 9)
such that the interventional distribution ? (G 9 | do(-8 = Ḡ)) would
be miscalculated if we used the estimated causal adjacency ma-
trix. Both metrics should be lower to represent better estimated
adjacency matrix. Table 3 shows the causal discovering results of
M���P���� and its baselines for various synthetic datasets, where
the best and second-best levels of performance are shown in bold
and underlined, respectively. Our method outperformed all base-
lines for every temporal sequence, which is consistent with the
analysis provided in Lemma 2. This is because none of the competi-
tors can handle the time-evolving causality in data streams.
Q2-2. Forecasting accuracy. We evaluated the quality of M���
�P���� in terms of ;B -steps-ahead forecasting accuracy. For this
evaluation, we adopted the root mean square error (RMSE) and the



“How substantially does causal discovery in a data stream        
enhance forecasting accuracy?” 
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Table 5: Ablation study results with forecasting steps ;B 2 {5, 10, 15} for both synthetic and real-world datasets.

Datasets #0 synthetic #1 covid19 #2 web-search #3 chicken-dance #4 exercise

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

M���P���� (full) 5 0.722 0.528 0.588 0.268 0.573 0.442 0.353 0.221 0.309 0.177
10 0.829 0.607 0.740 0.361 0.620 0.481 0.511 0.325 0.501 0.309
15 0.923 0.686 0.932 0.461 0.646 0.505 0.653 0.419 0.687 0.433

w/o causality 5 0.759 0.563 0.758 0.374 0.575 0.437 0.391 0.262 0.375 0.218
10 0.925 0.696 0.848 0.466 0.666 0.511 0.590 0.398 0.707 0.433
15 1.001 0.760 1.144 0.583 0.708 0.545 0.821 0.537 0.856 0.533

Figure 4: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis of these graphs is a loga-
rithmic scale. M���P���� is superior to its competitors. It is
up to 1,500x faster than its competitors.

mean absolute error (MAE), both of which provide good results
when they are close to zero. For all methods, we used one-third of
the sequences to tune their parameters. Table 4 presents the over-
all forecasting results, where the best results are in bold and the
second-best are underlined. For brevity, we only reported results of
a representative synthetic dataset, which has the most complicated
temporal sequence, “1, 2, 3, 2, 1”. We compared the two metrics
when we varied the forecasting step (i.e., ;B 2 {5, 10, 15}). Our
method remarkable improvements over its competitors. While deep
learning models (TimesNet, PatchTST, and DeepAR) exhibit high
a generality for time series modeling, their forecasting accuracy
was poorer because they could not adjust the model parameters
incrementally. OrbitMap is capable of handling multiple discrete
non-linear dynamics but misses the time-evolving causality, and
thus was outperformed by our proposed method. ARIMA assumes
linear relationships between time series data and so fails to ac-
commodate complex and non-linear data resulting in decreased
forecasting accuracy.
Q2-3. Ablation study. To quantitatively evaluate the impact of
causal relationships on forecasting e�ectiveness, we additionally
performed an ablation study by comparing a limited version of our
method, namely w/o causality, whose demixing matrix] was �xed
to the identity matrix. Table 5 presents the overall results of our
ablation study on M���P���� using both synthetic and real-world
datasets. We can see that the w/o causality causes a signi�cant drop
in forecasting accuracy across all experimental settings. Therefore,
we observed that the discovery of time-evolving causality in data
streams boosts forecasting accuracy.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 4 compares the computa-
tional e�ciencies of M���P���� and its competitors. It presents the
computation time at each time point C2 on the left, and the average
computation time on the right. Note that both �gures are shown

on linear-log scales. Our method consistently outperformed its
competitors in terms of computation time thanks to our incremen-
tal update, which aligns with the discussion presented in Lemma
3. OrbitMap was competitive, but it estimates model parameters
via iterative optimization, the expectation-maximization algorithm,
which makes it slower than our proposed algorithm. Other methods
require a signi�cant amount of learning time because they cannot
update their models incrementally.

6 CONCLUSION
In this paper, we focused on the summarization of an entire data
stream, discovering the time-evolving causality in data streams
and forecasting future values incrementally. Our proposed method,
namelyM���P����, exhibits all of the following desirable proper-
ties that we listed in the introduction:
• It is E�ective: It provides the time-evolving causality, namely
insightful time-changing causal relationships in data streams.

• It is Accurate: Our experiments demonstrated that M���P����
precisely discovers the time-evolving causality and forecasts
future values in a streaming fashion.

• It is Scalable: The computation time for our proposed algorithm
does not depend on data stream length. It outperforms the
state-of-the-art algorithms for time series forecasting.
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Table 5: Ablation study results with forecasting steps ;B 2 {5, 10, 15} for both synthetic and real-world datasets.

Datasets #0 synthetic #1 covid19 #2 web-search #3 chicken-dance #4 exercise

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

M���P���� (full) 5 0.722 0.528 0.588 0.268 0.573 0.442 0.353 0.221 0.309 0.177
10 0.829 0.607 0.740 0.361 0.620 0.481 0.511 0.325 0.501 0.309
15 0.923 0.686 0.932 0.461 0.646 0.505 0.653 0.419 0.687 0.433

w/o causality 5 0.759 0.563 0.758 0.374 0.575 0.437 0.391 0.262 0.375 0.218
10 0.925 0.696 0.848 0.466 0.666 0.511 0.590 0.398 0.707 0.433
15 1.001 0.760 1.144 0.583 0.708 0.545 0.821 0.537 0.856 0.533

Figure 4: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis of these graphs is a loga-
rithmic scale. M���P���� is superior to its competitors. It is
up to 1,500x faster than its competitors.

mean absolute error (MAE), both of which provide good results
when they are close to zero. For all methods, we used one-third of
the sequences to tune their parameters. Table 4 presents the over-
all forecasting results, where the best results are in bold and the
second-best are underlined. For brevity, we only reported results of
a representative synthetic dataset, which has the most complicated
temporal sequence, “1, 2, 3, 2, 1”. We compared the two metrics
when we varied the forecasting step (i.e., ;B 2 {5, 10, 15}). Our
method achieved remarkable improvements over its competitors.
While deep learning models (TimesNet, PatchTST, and DeepAR)
exhibit high generality for time series modeling, their forecasting
accuracy was poorer because they could not adjust the model pa-
rameters incrementally. OrbitMap is capable of handling multiple
discrete nonlinear dynamics but misses the time-evolving causality,
and thus was outperformed by our proposed method. ARIMA as-
sumes linear relationships between time series data and so fails to
accommodate complex and nonlinear data resulting in decreased
forecasting accuracy.
Q2-3. Ablation study. To quantitatively evaluate the impact of
causal relationships on forecasting e�ectiveness, we additionally
performed an ablation study by comparing a limited version of our
method, namely w/o causality, whose demixing matrix] was �xed
to the identity matrix. Table 5 presents the overall results of our
ablation study on M���P���� using both synthetic and real-world
datasets. We can see that the w/o causality causes a signi�cant drop
in forecasting accuracy across all experimental settings. Therefore,
we observed that the discovery of time-evolving causality in data
streams boosts forecasting accuracy.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 4 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computational time at each time point C2 on the left, and the
average computational time on the right. Note that both �gures are

shown on linear-log scales. Our method consistently outperformed
its competitors in terms of computational time thanks to our in-
cremental update, which aligns with the discussion presented in
Lemma 3. OrbitMap was competitive, but it estimates model pa-
rameters via iterative optimization, the expectation-maximization
algorithm, which makes it slower than our proposed algorithm.
Other methods require a signi�cant amount of learning time be-
cause they cannot update their models incrementally.

6 Conclusion
In this paper, we focused on the summarization of an entire data
stream, discovering the time-evolving causality in data streams,
and forecasting future values incrementally. Our proposed method,
namelyM���P����, exhibits all of the following desirable proper-
ties that we listed in the introduction:

• It is E�ective: It provides the time-evolving causality, namely
insightful time-changing causal relationships in data streams.

• It is Accurate: Our experiments demonstrated that M���P����
precisely discovers the time-evolving causality and forecasts
future values in a streaming fashion.

• It is Scalable: The computational time for our proposed algo-
rithm does not depend on the data stream length.
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Table 5: Ablation study results with forecasting steps ;B 2 {5, 10, 15} for both synthetic and real-world datasets.

Datasets #0 synthetic #1 covid19 #2 web-search #3 chicken-dance #4 exercise

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

M���P���� (full) 5 0.722 0.528 0.588 0.268 0.573 0.442 0.353 0.221 0.309 0.177
10 0.829 0.607 0.740 0.361 0.620 0.481 0.511 0.325 0.501 0.309
15 0.923 0.686 0.932 0.461 0.646 0.505 0.653 0.419 0.687 0.433

w/o causality 5 0.759 0.563 0.758 0.374 0.575 0.437 0.391 0.262 0.375 0.218
10 0.925 0.696 0.848 0.466 0.666 0.511 0.590 0.398 0.707 0.433
15 1.001 0.760 1.144 0.583 0.708 0.545 0.821 0.537 0.856 0.533

Figure 4: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis of these graphs is a loga-
rithmic scale. M���P���� is superior to its competitors. It is
up to 1,500x faster than its competitors.

mean absolute error (MAE), both of which provide good results
when they are close to zero. For all methods, we used one-third of
the sequences to tune their parameters. Table 4 presents the over-
all forecasting results, where the best results are in bold and the
second-best are underlined. For brevity, we only reported results of
a representative synthetic dataset, which has the most complicated
temporal sequence, “1, 2, 3, 2, 1”. We compared the two metrics
when we varied the forecasting step (i.e., ;B 2 {5, 10, 15}). Our
method achieved remarkable improvements over its competitors.
While deep learning models (TimesNet, PatchTST, and DeepAR)
exhibit high generality for time series modeling, their forecasting
accuracy was poorer because they could not adjust the model pa-
rameters incrementally. OrbitMap is capable of handling multiple
discrete nonlinear dynamics but misses the time-evolving causality,
and thus was outperformed by our proposed method. ARIMA as-
sumes linear relationships between time series data and so fails to
accommodate complex and nonlinear data resulting in decreased
forecasting accuracy.
Q2-3. Ablation study. To quantitatively evaluate the impact of
causal relationships on forecasting e�ectiveness, we additionally
performed an ablation study by comparing a limited version of our
method, namely w/o causality, whose demixing matrix] was �xed
to the identity matrix. Table 5 presents the overall results of our
ablation study on M���P���� using both synthetic and real-world
datasets. We can see that the w/o causality causes a signi�cant drop
in forecasting accuracy across all experimental settings. Therefore,
we observed that the discovery of time-evolving causality in data
streams boosts forecasting accuracy.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 4 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computational time at each time point C2 on the left, and the
average computational time on the right. Note that both �gures are

shown on linear-log scales. Our method consistently outperformed
its competitors in terms of computational time thanks to our in-
cremental update, which aligns with the discussion presented in
Lemma 3. OrbitMap was competitive, but it estimates model pa-
rameters via iterative optimization, the expectation-maximization
algorithm, which makes it slower than our proposed algorithm.
Other methods require a signi�cant amount of learning time be-
cause they cannot update their models incrementally.

6 Conclusion
In this paper, we focused on the summarization of an entire data
stream, discovering the time-evolving causality in data streams,
and forecasting future values incrementally. Our proposed method,
namelyM���P����, exhibits all of the following desirable proper-
ties that we listed in the introduction:

• It is E�ective: It provides the time-evolving causality, namely
insightful time-changing causal relationships in data streams.

• It is Accurate: Our experiments demonstrated that M���P����
precisely discovers the time-evolving causality and forecasts
future values in a streaming fashion.

• It is Scalable: The computational time for our proposed algo-
rithm does not depend on the data stream length.

Acknowledgment. We would like to thank the anonymous refer-
ees for their valuable and helpful comments. This work was partly
supported by “Program for Leading Graduate Schools” of the Os-
aka University, Japan, JST CREST JPMJCR23M3, JSPS KAKENHI
Grant-in-Aid for Scienti�c Research Number JP24KJ1618.

References
[1] CMU motion capture database. http://mocap.cs.cmu.edu/.
[2] Google COVID-19 Open Data Repository. https://health.google.com/covid-19/

open-data/.
[3] Google Trends. https://trends.google.co.jp/trends/.
[4] Source codes and datasets. https://github.com/C-Naoki/ModePlait.
[5] Charu C. Aggarwal (Ed.). 2007. Data Streams - Models and Algorithms. Advances

in Database Systems, Vol. 31. Springer.
[6] Kenneth A Bollen. 1989. Structural equations with latent variables. John Wiley &

Sons.
[7] George EP Box and Gwilym M Jenkins. 1976. Time series analysis: forecasting

and control (Revised Edition). John Wiley & Sons.
[8] C. Buckley. 2022. Relief, Reunions and Some Anxiety as Shanghai (Mostly)

Reopens. New York Times (Jun. 1, 2022).
[9] Yuxiao Cheng, Runzhao Yang, Tingxiong Xiao, Zongren Li, Jinli Suo, Kunlun He,

and Qionghai Dai. 2023. CUTS: Neural Causal Discovery from Irregular Time-
Series Data. In The Eleventh International Conference on Learning Representations.

[10] David Maxwell Chickering. 2002. Optimal structure identi�cation with greedy
search. Journal of machine learning research 3, Nov (2002), 507–554.

[11] Pierre Comon. 1994. Independent component analysis, a new concept? Signal
processing 36, 3 (1994), 287–314.

1,800x



Outline

q Background

q Proposed Model

q Optimization Algorithm

q Experiments

q Conclusion

© 2025 Naoki Chihara et al. 44



Conclusion
ModePlait has all of the following desirable properties
Ø Effective
• It provides the time-evolving causality in a data stream based on 

monitoring regimes
Ø Accurate
• It theoretically discovers time-evolving causality and precisely 

forecasts
• Our experiments demonstrated that it outperforms its competitors
Ø Scalable
• Our algorithm does not depend on data stream length
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Latent temporal dynamics of inherent signal

Ø We need to capture latent dynamics in univariate time series
v Single dimension is inadequate for modeling the system
v We adopt the time-delay embedding to augment a state
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図 2: ModePlait のモデル概要図: (a) 動的システムに従う i番目の変数に固有な単変量信号 e(i) から潜在的なダイナミクスを
抽出する. (b) 多次元時系列データは混合行列 W−1 と d個の自己駆動因子 {D(1), ...,D(d)} によって表現される．
3. 1 ModePlait モデル
本節では提案モデルの詳細を述べる．初めに必要な概念の定
義について説明する．
定義 1 (固有信号：E). 非ガウス分布に従う d個の相互に独立
した要素を持つ信号E = {e(i)}di=1 を固有信号と呼ぶ．ただし，
e(i) = {e(i)(1), ..., e(i)(t)}は i番目の単変量時系列である．こ
れは，時間の経過に従って変化するという特徴がある．
図 2 は提案モデルの全体図である．提案手法は，以下のような
特徴を捉えることで目的を達成する．

(P1) 外生変数の潜在的な時間ダイナミクス
(P2) 単一レジーム内の特徴的な時系列パターン

(P1)は，外生変数を基底ベクトル（モード）の重ね合わせで
表現する．そして，上記の要素を組みわせて (P2)を捉える．
3. 1. 1 固有信号中の潜在的な時間ダイナミクス (P1)

初めに，i番目の固有信号 e(i) = {e(i)(1), ..., e(i)(t)}から潜
在的な時間ダイナミクスを捉える方法について説明する．問
題点としては，システム内の潜在的なダイナミクスが一般に
多次元であるため，システムを十分に表現するためには，単次
元なデータではしばしば不十分であることが挙げられる．こ
の問題点を補うために，状態空間の拡張手法を活用する．特
に，本研究では非線形なダイナミクスの抽出に有効な時間遅
れ埋め込みを採用する．具体的には，これは一般的な観測量
g(e(i)(t)) := (e(i)(t), e(i)(t − 1), ..., e(i)(t − h + 1)) ∈ Rh に基
づいており，非線形システムのアトラクタを幾何学的に再構成
するための確立された手法である．ただし，hは埋め込み次元
である．上記の g(·)を用いてハンケル行列を形成する．

H(i) =

⎡

⎢⎢⎣

| | |
g(e(i)(h)) g(e(i)(h+ 1)) · · · g(e(i)(t))

| | |

⎤

⎥⎥⎦ (1)

式 (1) のとおり，各状態ベクトルは過去情報を付与して拡張さ
れている．さらに，Takens の埋め込み定理 [48]によれば，特
定の条件下において，時間遅れ埋め込みによって生成されるベ

クトルは，元の状態と微分同相なダイナミクスを持つことが保
証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．
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証される．直感的に説明をすると，この再構成は元の力学系の
特性を理論的に保つ，つまり，ハンケル行列H(i) の解析を通
じて，元のデータからは直接抽出できない重要な特徴を明らか
にすることを可能にする．多くの場合，微分同相写像を犠牲に
することなく埋め込み次元を選択できる．
ここで，i番目の固有信号 e(i) の動的システムのために，ki

次元の複素数値の潜在状態 s(i)(t) ∈ Cki を導入する．ただし，
ki はモードの数である．したがって，i番目の固有信号 e(i) は
以下の式で記述される．
モデル 1. s(i)(t)を時刻 tにおける ki 次元の潜在状態とする．
i番目の単変量固有信号 e(i) は次の式で表現される．

s(i)(t+ 1) = Λ(i)s(i)(t)

e(i)(t) = g−1(Φ(i)s(i)(t))
(2)

ここで，g−1(·)は観測量 g(·)の逆写像, Φ(i) の各列が各モード
で，Λ(i) が ki 個の固有値である．
s(i)(t) は ki 個のモードの重ね合わせで表現される．そして，
固有値 Λ(i) ∈ Cki×ki が時間ダイナミクスを示し，モード
Φ(i) ∈ Ch×ki および g−1(·)は時刻 tにおける i番目の固有信号
e(i)(t)を生成するための射影を示す．まとめると，以下を得る．
定義 2 (固有ダイナミクス集合：D(i)). モード Φ(i) と固有値
Λ(i) による集合 D(i) = {Φ(i),Λ(i)} を固有ダイナミクス集合
と呼ぶ．これは，i番目の単変量固有信号 e(i) の潜在的な時間
ダイナミクスを表現する．
3. 1. 2 単一レジーム内の特徴的な時系列パターン (P2)

続いて，時系列データストリーム中の時間変化する因果関係
を考慮した特徴的な時系列パターン（レジーム）を表現する方
法について述べる．時刻 tにおける推定値 v(t) ∈ Rd を生成す
るためのモデルを，d個の固有ダイナミクス集合 D(1), ...,D(d)

で構築する．また，d個の潜在状態を S(t) = {s(i)(t)}di=1 と表
記する．したがって，多変量時系列データはモデル 1を拡張し
た以下の式で記述される．

According to 
Takens’ embedding 
theorem



Related work
Ø ModePlait has the relative advantages with regard to five aspects.
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Related work
Ø ARIMA [Box and Jenkins 1976]

v Classical method for time series forecasting
v It assumes linear relationships between time series data  

Ø OrbitMap [Matsubara and Sakurai 2019]
v Latest general method focusing on stream forecasting
v It cannot discover the time-evolving causality
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Related work
Ø Most methods for causal discovery

v CASPER [Liu et al. 2023]etc.
v It cannot handle time series data/data streams

Ø Deep learning-based method for time series forecasting
v TimesNet [Wu et al. 2023] etc.
v The high computational costs associated with time series 

analysis hinders continuous model updating
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Proposal: Illustration of ModePlait
Ø Illustration of ModePlait is as follows
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Experiments: Metrics
We adopted SHD and SID to evaluate causal discovery accuracy
Ø structural Hamming distance (SHD)

v It quantifies the difference in the causal adjacency matrix
v It counts missing, extra, and reversed edges

Ø structural intervention distance (SID)
v It is particularly suited to evaluate causal discovering accuracy
v It counts the number of couples (𝑖, 𝑗) such that the interventional 

distribution 𝑝 𝑥$	|	do(𝑋" = 𝑥̅)  would be miscalculated if we used 
the estimated causal adjacency matrix
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Experiments: Metrics
We used RMSE and MAE to evaluate time series forecasting accuracy
Ø root mean square error (RMSE) … emphasizes large deviations

𝑅𝑀𝑆𝐸 =
1
𝑁
@
!"#

$

𝑦! − C𝑦!

Ø mean absolute error (MAE) … measures the overall errors

𝑀𝐴𝐸 =
1
𝑁
@
!"#

$

𝑦! − C𝑦!
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Ø We generated synthetic datasets containing multiple clusters
• Each cluster corresponds to one causal relationship
• The causal adjacency matrix 𝑩 is created based on Eröds-Rényi
• Edge density 𝑝 = 0.5, Number of observations 𝑑 = 5

Experiments: Synthetics
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