Mode

Estimator

Regime

Modeling Time-evolving Causality over Data Streams

Naoki Chihara, Yasuko Matsubara, Ren Fujiwara, Yasushi Sakurai SANKEN, The University of Osaka

Source Code

Motivation - Data streams appear all around now

Motion analysis

Epidemiology

Web activity

Challenges - Causal relationsihps drift over time

For example, the emergence of a new virus strain in a country leads to an increase in the number of infections in other countries

How to get time-changing causal relationships?

Problem Definition - We tackle the following challenges

Given: Multivariate data stream, i.e., $X = \{x(1), ..., x(t_c), ...\}$

Goal: Achieve all of the following objectives

- Find distinct dynamical patterns / regimes
- Discover causal relationships, which changes over time / time-evolving causality
- Forecast an l_s -steps ahead future values

ModePlait: novel streaming method

Proposed Model - ModePlait Classical framework for causality

Key Concepts - Our model is designed based on SEM Exogenous variables evolve over time / inherent signals

$$X_{\text{sem}} = B_{\text{sem}} X_{\text{sem}} + E_{\text{sem}}$$

Observed variables Causal adjacency matrix Exogenous variables $x_i = \sum_{j \in Pa(i)} b_{ij} x_j + e_i$: Structural equation describing x_i

Main idea (P1): Latent temporal dynamics

 \bigotimes Each inherent signal $e_{(i)}(t)$ is only a single dimension ⇒ superposition of computed basis vectors (i.e., **modes**)

embedding

 $\mathcal{D}_{(i)} = \{\Phi_{(i)}, \Lambda_{(i)}\}$ / self-dynamics factor set $g(e_{(i)}(t)) := (e_{(i)}(t), e_{(i)}(t-1), ..., e_{(i)}(t-h+1)), k_i: \# \text{ of modes}$

Main idea (P2): Dynamical patterns

Describe distinct dynamical pattern (i.e., regime)

(Relationships b/w inherent signals)

 $\theta = \{W, \mathcal{D}_{(1)}, ..., \mathcal{D}_{(d)}\}$ / regime, $\Theta = \{\theta^1, ..., \theta^R\}$ / regime set

 $\mathcal{B} = \{B^1, ..., B^R\}$ / time-evolving causality

Optimization algorithm

Given:

Multivariate data Stream X

Estimate:

- Full parameter set $\mathcal{F} = \{\Theta, \Omega\}, \Omega$: update param $_R$ Regime set
- Model candidate
- $C = \{\theta^c, \omega^c, S_{en}^c\}$ Time-evolving causality $\mathcal{B} = \{B^1, ..., B^R\}, R: \# \text{ of regimes}$
- l_s -steps ahead future value $v(t_c + l_s)$, t_c : current time point

Theoretical analysis - See Lemma 2 & 3 for details

- It theoretically discovers causal relationships
- It is practical for semi-infinite data streams

Details in paper

Current regime: $\theta^c \in \mathcal{C}$

Experiments - Answer the essential questions Q1. Effectiveness - Epidemiological data stream

Q2. Accuracy - Causal discovery and Forecasting

Table 3: Causal discovering results with multiple temporal sequences to encompass various types of real-world scenarios. ModePlait CASPER Models DARING NoCurl NO-MLP LiNGAM GES SHD SID SHD SID SHD SID Metrics 3.82 11.7 6.69 10.0 6.55 8.72 <u>5.23</u> 1, 2, 2, 1 6.12 9.58 1, 2, 3, 4 6.10 9.61 1, 2, 3, 2, 1 6.20 9.83 6.56 8.83 5.57 7.74 12.1

Table 4: Multivariate forecasting results for both synthetic and real-world datasets. We used forecasting steps $l_s \in \{5, 10, 15\}$.

Models		MODEPLAIT		TimesNet		PatchTST		DeepAR		OrbitMap		ARIMA	
Metrics		RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE
#0 synthetic	5	0.722	0.528	0.805	0.578	0.768	0.581	1.043	0.821	0.826	0.567	0.962	0.748
	10	0.829	0.607	0.862	0.655	0.898	0.649	1.073	0.849	0.896	0.646	0.966	0.752
	15	0.923	0.686	0.940	0.699	0.973	0.706	1.137	0.854	0.966	0.710	0.982	0.765
#1 covid19	5	0.588	0.268	0.659	0.314	0.640	0.299	1.241	0.691	1.117	0.646	1.259	0.675
	10	0.740	0.361	0.841	0.410	1.053	0.523	1.255	0.693	1.353	0.784	1.260	0.687
	15	0.932	0.461	1.026	<u>0.516</u>	1.309	0.686	1.265	0.690	1.351	0.792	1.277	0.718
#2 web-search	5	0.573	0.442	0.626	0.469	0.719	0.551	1.255	1.024	0.919	0.640	1.038	0.981
	10	0.620	0.481	0.697	0.514	0.789	0.604	1.273	1.044	0.960	0.717	1.247	1.037
	15	0.646	0.505	0.701	0.527	0.742	0.571	1.300	1.069	0.828	0.631	1.038	0.795
#3 chicken-dance	5	0.353	0.221	0.759	0.490	0.492	0.303	0.890	0.767	0.508	0.316	2.037	1.742
	10	0.511	0.325	0.843	0.564	0.838	0.535	0.886	0.753	0.730	0.476	1.863	1.530
	15	0.653	0.419	0.883	0.592	0.972	0.654	0.862	0.718	0.903	<u>0.565</u>	1.792	1.481
#4 exercise	5	0.309	0.177	0.471	0.275	0.465	0.304	0.408	0.290	0.424	0.275	1.003	0.748
	10	0.501	0.309	0.630	0.381	0.789	0.518	0.509	0.382	0.616	0.377	1.104	0.814
	15	0.687	0.433	0.786	0.505	1.147	0.758	0.676	0.475	0.691	0.434	1.126	0.901

Q3. Scalability

 It requires only constant computational time w.r.t. a data stream length

ModePlait outperforms its competitors

Conclusion - ModePlait has following properties:

Effective: it discovers time-evolving causality

Accurate: its performance is confirmed by experiments Scalable: it does not depend on stream length