
Proposed Model - ModePlait                    
Key Concepts - Our model is designed based on SEM
Exogenous variables evolve over time / inherent signals

 

Main idea (P1): Latent temporal dynamics        E   
     Each inherent signal 𝑒 ! (𝑡) is only a single dimension 
⇒ superposition of computed basis vectors (i.e., modes) 

Main idea (P2): Dynamical patterns
Describe distinct dynamical pattern (i.e., regime) 

Experiments - Answer the essential questions
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Motivation - Data streams appear all around now

Challenges - Causal relationsihps drift over time

Problem Definition - We tackle the following challenges
Given: Multivariate data stream, i.e., 𝑿 = {𝒙 1 ,… , 𝒙 𝑡" , … } 
Goal: Achieve all of the following objectives
• Find distinct dynamical patterns / regimes
• Discover causal relationships, which changes over  time / 

time-evolving causality
• Forecast an 𝑙#-steps ahead future values

ModePlait: novel streaming methoda

Optimization algorithm                              
Given:
• Multivariate data Stream 𝑿
Estimate:
• Full parameter set 

• Model candidate 

• Time-evolving causality

• 𝑙!-steps ahead future value
Theoretical analysis - See Lemma 2 & 3 for details
• It theoretically discovers causal relationships
• It is practical for semi-infinite data streams

Conclusion - ModePlait has following properties: 
Effective: it discovers time-evolving causality
Accurate: its performance is confirmed by experiments
Scalable: it does not depend on stream length
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L���� 1 (T��� ���������� �� R�����C�������). The time
complexity of R�����C������� is $ (# (32 + ⌘2) + :3), where : =
max8 (:8 ). Please see Appendix B for details.

4.2 Proposed streaming algorithm
Our next step is to answer the most important question: how can
we employ our proposed model for identifying the causal adjacency
matrix H from the demixing matrix] 2 ) and forecasting future
values in a streaming fashion? Before turning to the main topic, we
provide the de�nitions of some key concepts.

D��������� 6 (U����� ���������: 8). Let 8 be a parameter
set for updating a regime \ , i.e., 8 = {{V(8 ) }38=1, {& (8 ) }38=1}, where
V(8 ) = (X (8 )SX>

(8 ) )
�1 and & (8 ) is the energy.

D��������� 7 (F��� ��������� ���: F ). Let F be a full pa-
rameter set of M���P����, i.e., F = {⇥,⌦}, where ⇥ and ⌦ con-
sist of ' regimes and update parameters, respectively, namely, ⇥ =
{) 1, ..., )'}, and ⌦ = {81, ...,8'}.
With the above de�nitions, the formal problem is as follows:

P������ 1. Given a multivariate data stream ^ , where x (C2 ) is
the most recent value at time point C2 ,

• Find the optimal full parameter set, i.e., F = {⇥,⌦},
• Discover the time-evolving causality, i.e., B,
• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),

Here, we refer to the regime for the current window ^2 = ^ [C< :
C2 ] as )2 , and the update parameter corresponding to )2 as 82 . In
addition, we need the latent vectors Y (C2 ) at the current time C2 for
forecasting an ;B -steps-ahead future value v (C2 + ;B ), and so keep
it as Y24= . In summary, our proposed algorithm keeps them as the
model candidate C = {)2 ,82 , Y24=} for stream processing.

4.2.1 Overview. We now introduce our streaming algorithm,M���
�P����, which consists of the following algorithms.
• M���E��������: Estimates the optimal full parameter set F

and the model candidate C.
• M���G��������: Forecasts an ;B -steps-ahead future value, i.e.,

v (C2 + ;B ), and identi�es the causal adjacency matrix H, using
the model candidate C.

• R�����U������: Updates the current regime )2 using update
parameter 82 and the most recent value x (C2 ).

Algorithm 1 (See Appendix B) provides an overview of M���P����.
Given a new value x (C2 ) at the current time C2 , it updates the full
parameter set F and the model candidate C by usingM���E������
���. Next, it generates an ;B -steps-ahead future value v (C2 + ;B ) and
the causal adjacency matrix H from the demixing matrix] 2 )2

usingM���G��������. Finally, if a new regime is not created, it
also updates the model candidate C with a new value x (C2 ).
4.2.2 M���E��������. Given a new value x (C2 ) at the current time
C2 , we �rst need to update the full parameter set F incrementally
and the model candidate C, which best describes the current win-
dow^2 . Algorithm 2 (See Appendix B) is theM���E�������� algo-
rithm in detail. Here, let 5 (^2 ; Y20, )

2 ) be a new function for estimat-
ing the optimal parameter so that it minimizes the mean square er-
rors between the current window ^2 and the estimated window \2

in Model 2, i.e., 5 (^2 ; Y20, )
2 ) = ÕC2

C=C<+⌘�1 | |x (C)�v (C) | |, where Y
2
0

represents the latent vectors at time point C< +⌘�1. Note that when
embedding the time series using g(·), the number of data points
(namely, the number of columns in the Hankel matrixN ) is partially
reduced compared with before embedding. The most straightfor-
ward way to determine Y20 is to adopt {�†

(8 )g(4 (8 ) (C< + ⌘ � 1))}38=1
according to Eq. (3). However, the noisy initial conditions give rise
to unexpected forecasting. Therefore, we optimize Y20 by using the
Levenberg-Marquardt (LM) algorithm [42] and thus enable the ef-
fects of noise in observations to be removed. Here, we return to the
M���E�������� algorithm, which proceeds as follows:
I. It optimizes initial condition Y20 , so that it minimizes the errors

between the current window ^2 and the current regime )2 .
II. If 5 (^2 ; Y20, )

2 ) > g , it searches for a better regime ) 2 ⇥.
III. If 5 (^2 ; Y20, )

2 ) > g still holds, it creates a new regime for ^2

using R�����C�������, and inserts it into ⇥.

4.2.3 M���G��������. The next algorithm is M���G��������,
which incrementally forecasts an ;B -steps-ahead future value v (C2 +
;B ) and identi�es the causal adjacency matrix H by using the model
candidate C. As for forecasting, it generates the value of v (C2 + ;B )
according to Eq. (3) with the most suitable regime )2 for ^2 , which
is selected by M���E��������. On the other hand, we identify
the causal adjacency matrix H from the demixing matrix] 2 )2 .
A mixing matrix (i.e., the inverse of a demixing matrix) typically
has the two major indeterminacies: the order and scaling of the
independent components; however, we must address the above
di�culties if we are to identify the optimal causal adjacency ma-
trix. The algorithm for resolving the above indeterminacies and
identifying the causal adjacency matrix H proceeds as follows:
I. Find the permutation of rows of ] that yields a matrix ]̃

without any zeros on the main diagonal.
II. Divide each row of ]̃ by its corresponding diagonal element

to yield a new matrix ]̃ 0 with all ones on the diagonal.
III. Compute an estimate Ĥ of H using Ĥ = O � ]̃ 0.
IV. Finally, to �nd a causal order, compute the permutation matrix

Q of Ĥ that yields a matrix H̃ = QĤQ>, which minimizes the
sum of the elements in the upper triangular part of H̃.

This algorithm resolves two major indeterminacies in a mixing
matrix in steps I and II. Moreover, it �nds the causal order, in other
words, it removes the insu�cient connection in step IV. The causal
relationships are already identi�ed up to step III, but this step is
important for visualizing the resulting directed acyclic graph.

L���� 2 (C����� ���������������). Causal discovery in M���
�P���� is equivalent to �nding the causal adjacency matrix H in
M���G��������. Please see Appendix B for details.

This lemma demonstrates theoretically that our proposed algorithm
is capable of discovering causal relationships.

4.2.4 R�����U������. Finally, when an existing regime is selected
as the current regime )2 from the regime set ⇥, we update its pa-
rameters (i.e.,] ,D(1) , ...,D(3 ) ) using a new value x (C2 ) to ensure
that this regime represents a more sophisticated dynamical pattern.
In short, R�����U������ has two parts: (i) update the demixing ma-
trix] and (ii) update each self-dynamics factor setD(8 ) . In part (i),
we use an algorithm based on adaptive �ltering techniques [26, 60].
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards

“Time-evolving”
causality

!

"!"" #

Future values 
(unknown)

Time "

Mode
Estimator

Regime
Creation

Current regime: $! ∈ &
!

insert new regime

Forecast   
!!-steps-ahead
future value

i.e., !(#! + %")

"! + (#

V!

!!
Regime set

Θ

" ""

#

Causal adjacency matrixCurrent window: ""

!

#!"
##!

##"

"(")"($)*
, , ⋮ ,

#"!
##!

##"

estimate

Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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L���� 1 (T��� ���������� �� R�����C�������). The time
complexity of R�����C������� is $ (# (32 + ⌘2) + :3), where : =
max8 (:8 ). Please see Appendix B for details.

4.2 Proposed streaming algorithm
Our next step is to answer the most important question: how can
we employ our proposed model for identifying the causal adjacency
matrix H from the demixing matrix] 2 ) and forecasting future
values in a streaming fashion? Before turning to the main topic, we
provide the de�nitions of some key concepts.

D��������� 6 (U����� ���������: 8). Let 8 be a parameter
set for updating a regime \ , i.e., 8 = {{V(8 ) }38=1, {& (8 ) }38=1}, where
V(8 ) = (X (8 )SX>

(8 ) )
�1 and & (8 ) is the energy.

D��������� 7 (F��� ��������� ���: F ). Let F be a full pa-
rameter set of M���P����, i.e., F = {⇥,⌦}, where ⇥ and ⌦ con-
sist of ' regimes and update parameters, respectively, namely, ⇥ =
{) 1, ..., )'}, and ⌦ = {81, ...,8'}.
With the above de�nitions, the formal problem is as follows:

P������ 1. Given a multivariate data stream ^ , where x (C2 ) is
the most recent value at time point C2 ,

• Find the optimal full parameter set, i.e., F = {⇥,⌦},
• Discover the time-evolving causality, i.e., B,
• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),

Here, we refer to the regime for the current window ^2 = ^ [C< :
C2 ] as )2 , and the update parameter corresponding to )2 as 82 . In
addition, we need the latent vectors Y (C2 ) at the current time C2 for
forecasting an ;B -steps-ahead future value v (C2 + ;B ), and so keep
it as Y24= . In summary, our proposed algorithm keeps them as the
model candidate C = {)2 ,82 , Y24=} for stream processing.

4.2.1 Overview. We now introduce our streaming algorithm,M���
�P����, which consists of the following algorithms.
• M���E��������: Estimates the optimal full parameter set F

and the model candidate C.
• M���G��������: Forecasts an ;B -steps-ahead future value, i.e.,

v (C2 + ;B ), and identi�es the causal adjacency matrix H, using
the model candidate C.

• R�����U������: Updates the current regime )2 using update
parameter 82 and the most recent value x (C2 ).

Algorithm 1 (See Appendix B) provides an overview of M���P����.
Given a new value x (C2 ) at the current time C2 , it updates the full
parameter set F and the model candidate C by usingM���E������
���. Next, it generates an ;B -steps-ahead future value v (C2 + ;B ) and
the causal adjacency matrix H from the demixing matrix] 2 )2

usingM���G��������. Finally, if a new regime is not created, it
also updates the model candidate C with a new value x (C2 ).
4.2.2 M���E��������. Given a new value x (C2 ) at the current time
C2 , we �rst need to update the full parameter set F incrementally
and the model candidate C, which best describes the current win-
dow^2 . Algorithm 2 (See Appendix B) is theM���E�������� algo-
rithm in detail. Here, let 5 (^2 ; Y20, )

2 ) be a new function for estimat-
ing the optimal parameter so that it minimizes the mean square er-
rors between the current window ^2 and the estimated window \2

in Model 2, i.e., 5 (^2 ; Y20, )
2 ) = ÕC2

C=C<+⌘�1 | |x (C)�v (C) | |, where Y
2
0

represents the latent vectors at time point C< +⌘�1. Note that when
embedding the time series using g(·), the number of data points
(namely, the number of columns in the Hankel matrixN ) is partially
reduced compared with before embedding. The most straightfor-
ward way to determine Y20 is to adopt {�†

(8 )g(4 (8 ) (C< + ⌘ � 1))}38=1
according to Eq. (3). However, the noisy initial conditions give rise
to unexpected forecasting. Therefore, we optimize Y20 by using the
Levenberg-Marquardt (LM) algorithm [42] and thus enable the ef-
fects of noise in observations to be removed. Here, we return to the
M���E�������� algorithm, which proceeds as follows:
I. It optimizes initial condition Y20 , so that it minimizes the errors

between the current window ^2 and the current regime )2 .
II. If 5 (^2 ; Y20, )

2 ) > g , it searches for a better regime ) 2 ⇥.
III. If 5 (^2 ; Y20, )

2 ) > g still holds, it creates a new regime for ^2

using R�����C�������, and inserts it into ⇥.

4.2.3 M���G��������. The next algorithm is M���G��������,
which incrementally forecasts an ;B -steps-ahead future value v (C2 +
;B ) and identi�es the causal adjacency matrix H by using the model
candidate C. As for forecasting, it generates the value of v (C2 + ;B )
according to Eq. (3) with the most suitable regime )2 for ^2 , which
is selected by M���E��������. On the other hand, we identify
the causal adjacency matrix H from the demixing matrix] 2 )2 .
A mixing matrix (i.e., the inverse of a demixing matrix) typically
has the two major indeterminacies: the order and scaling of the
independent components; however, we must address the above
di�culties if we are to identify the optimal causal adjacency ma-
trix. The algorithm for resolving the above indeterminacies and
identifying the causal adjacency matrix H proceeds as follows:
I. Find the permutation of rows of ] that yields a matrix ]̃

without any zeros on the main diagonal.
II. Divide each row of ]̃ by its corresponding diagonal element

to yield a new matrix ]̃ 0 with all ones on the diagonal.
III. Compute an estimate Ĥ of H using Ĥ = O � ]̃ 0.
IV. Finally, to �nd a causal order, compute the permutation matrix

Q of Ĥ that yields a matrix H̃ = QĤQ>, which minimizes the
sum of the elements in the upper triangular part of H̃.

This algorithm resolves two major indeterminacies in a mixing
matrix in steps I and II. Moreover, it �nds the causal order, in other
words, it removes the insu�cient connection in step IV. The causal
relationships are already identi�ed up to step III, but this step is
important for visualizing the resulting directed acyclic graph.

L���� 2 (C����� ���������������). Causal discovery in M���
�P���� is equivalent to �nding the causal adjacency matrix H in
M���G��������. Please see Appendix B for details.

This lemma demonstrates theoretically that our proposed algorithm
is capable of discovering causal relationships.

4.2.4 R�����U������. Finally, when an existing regime is selected
as the current regime )2 from the regime set ⇥, we update its pa-
rameters (i.e.,] ,D(1) , ...,D(3 ) ) using a new value x (C2 ) to ensure
that this regime represents a more sophisticated dynamical pattern.
In short, R�����U������ has two parts: (i) update the demixing ma-
trix] and (ii) update each self-dynamics factor setD(8 ) . In part (i),
we use an algorithm based on adaptive �ltering techniques [26, 60].
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Table 3: Causal discovering results with multiple temporal sequences to encompass various types of real-world scenarios.

Models M���P���� CASPER DARING NoCurl NO-MLP NOTEARS LiNGAM GES

Metrics SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID SHD SID

1, 2, 1 3.82 4.94 5.58 7.25 5.75 8.58 6.31 9.90 6.36 8.74 5.03 9.95 7.13 8.23 7.49 11.7
1, 2, 3 4.48 6.51 5.97 8.44 5.81 9.17 6.13 9.51 6.44 8.77 5.69 9.56 6.79 7.33 7.03 10.1
1, 2, 2, 1 4.32 5.88 5.41 8.41 6.54 9.17 6.69 10.0 6.55 8.72 5.23 9.54 7.12 8.65 7.08 9.77
1, 2, 3, 4 4.21 5.76 6.22 8.33 6.12 9.58 6.10 9.61 6.62 8.87 5.73 10.1 7.10 8.50 7.29 11.3
1, 2, 3, 2, 1 4.50 6.11 6.02 8.28 5.45 7.77 6.20 9.83 6.56 8.83 5.57 9.11 7.46 8.05 7.74 12.1

Table 4: Multivariate forecasting results for both synthetic and real-world datasets. We used forecasting steps ;B 2 {5, 10, 15}.

Models M���P���� TimesNet PatchTST DeepAR OrbitMap ARIMA

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

#0 synthetic 5 0.722 0.528 0.805 0.578 0.768 0.581 1.043 0.821 0.826 0.567 0.962 0.748
10 0.829 0.607 0.862 0.655 0.898 0.649 1.073 0.849 0.896 0.646 0.966 0.752
15 0.923 0.686 0.940 0.699 0.973 0.706 1.137 0.854 0.966 0.710 0.982 0.765

#1 covid19 5 0.588 0.268 0.659 0.314 0.640 0.299 1.241 0.691 1.117 0.646 1.259 0.675
10 0.740 0.361 0.841 0.410 1.053 0.523 1.255 0.693 1.353 0.784 1.260 0.687
15 0.932 0.461 1.026 0.516 1.309 0.686 1.265 0.690 1.351 0.792 1.277 0.718

#2 web-search 5 0.573 0.442 0.626 0.469 0.719 0.551 1.255 1.024 0.919 0.640 1.038 0.981
10 0.620 0.481 0.697 0.514 0.789 0.604 1.273 1.044 0.960 0.717 1.247 1.037
15 0.646 0.505 0.701 0.527 0.742 0.571 1.300 1.069 0.828 0.631 1.038 0.795

#3 chicken-dance 5 0.353 0.221 0.759 0.490 0.492 0.303 0.890 0.767 0.508 0.316 2.037 1.742
10 0.511 0.325 0.843 0.564 0.838 0.535 0.886 0.753 0.730 0.476 1.863 1.530
15 0.653 0.419 0.883 0.592 0.972 0.654 0.862 0.718 0.903 0.565 1.792 1.481

#4 exercise 5 0.309 0.177 0.471 0.275 0.465 0.304 0.408 0.290 0.424 0.275 1.003 0.748
10 0.501 0.309 0.630 0.381 0.789 0.518 0.509 0.382 0.616 0.377 1.104 0.814
15 0.687 0.433 0.786 0.505 1.147 0.758 0.676 0.475 0.691 0.434 1.126 0.901

• (#2) web-search: consists of web-search counts collected over
ten years related to beer queries on Google [3].

• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [1] and consist of four dimensional
vectors (left/right legs and arms).

We compared our algorithm with the following seven baselines for
causal discovery, namely CASPER [34], DARING [26], NoCurl [58],
NOTEARS-MLP (NO-MLP) [61], NOTEARS [60], LiNGAM [50],
and GES [10]. Besides, we also compared with the �ve following
competitors for forecasting, namely TimesNet [56], PatchTST [41],
DeepAR [47], OrbitMap [37], and ARIMA [7]. Details regarding the
experimental settings are also provided in Appendix B.1.
Q1. E�ectiveness.We �rst demonstrated how e�ectivelyM����
P���� discovers the time-evolving causality and forecasts future
values in a streaming fashion using the epidemiological data stream
(i.e., #1 covid19). Recall that Figure 1 showsM���P���� modeling
and forecasting results. Figure 1 (a/b) shows graphical representa-
tions of the causal adjacency matrix H and the eigenvalues ⇤. Most
importantly, the causal relationships evolve over time in accordance
with the transitions of distinct dynamical patterns in the inherent
signals K .M���P���� can continuously detect new actual causative
events around the world (e.g., the discovery of a new lineage of the
coronavirus in South Africa, the abrupt increase in coronavirus in-
fections in the United States, and the strict, long-term lockdown in

Shanghai). Figure 1 (c) shows stream forecasting results. There has
been multiple distinct patterns (e.g., a rapid decrease in infections
numbers in the Republic of South Africa),M���P���� adaptively
captures the exponential patterns and forecasts future values close
to the originals.
Q2-1. Causal discovering accuracy. We next showed how ac-
curatelyM���P���� can discover the time-evolving causality. We
reported the structural Hamming distance (SHD) and the structural
intervention distance (SID) [45]. SHD quanti�es the di�erence in
the causal adjacency matrix by counting missing, extra, and re-
versed edges and SID is particularly suited for evaluating causal
discovering accuracy since it counts the number of couples (8, 9)
such that the interventional distribution ? (G 9 | do(-8 = Ḡ)) would
be miscalculated if we used the estimated causal adjacency ma-
trix. Both metrics should be lower to represent better estimated
adjacency matrix. Table 3 shows the causal discovering results of
M���P���� and its baselines for various synthetic datasets, where
the best and second-best levels of performance are shown in bold
and underlined, respectively. Our method outperformed all base-
lines for every temporal sequence, which is consistent with the
analysis provided in Lemma 2. This is because none of the competi-
tors can handle the time-evolving causality in data streams.
Q2-2. Forecasting accuracy. We evaluated the quality of M���
�P���� in terms of ;B -steps-ahead forecasting accuracy. For this
evaluation, we adopted the root mean square error (RMSE) and the
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Models M���P���� TimesNet PatchTST DeepAR OrbitMap ARIMA
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#0 synthetic 5 0.722 0.528 0.805 0.578 0.768 0.581 1.043 0.821 0.826 0.567 0.962 0.748
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15 0.923 0.686 0.940 0.699 0.973 0.706 1.137 0.854 0.966 0.710 0.982 0.765

#1 covid19 5 0.588 0.268 0.659 0.314 0.640 0.299 1.241 0.691 1.117 0.646 1.259 0.675
10 0.740 0.361 0.841 0.410 1.053 0.523 1.255 0.693 1.353 0.784 1.260 0.687
15 0.932 0.461 1.026 0.516 1.309 0.686 1.265 0.690 1.351 0.792 1.277 0.718

#2 web-search 5 0.573 0.442 0.626 0.469 0.719 0.551 1.255 1.024 0.919 0.640 1.038 0.981
10 0.620 0.481 0.697 0.514 0.789 0.604 1.273 1.044 0.960 0.717 1.247 1.037
15 0.646 0.505 0.701 0.527 0.742 0.571 1.300 1.069 0.828 0.631 1.038 0.795

#3 chicken-dance 5 0.353 0.221 0.759 0.490 0.492 0.303 0.890 0.767 0.508 0.316 2.037 1.742
10 0.511 0.325 0.843 0.564 0.838 0.535 0.886 0.753 0.730 0.476 1.863 1.530
15 0.653 0.419 0.883 0.592 0.972 0.654 0.862 0.718 0.903 0.565 1.792 1.481

#4 exercise 5 0.309 0.177 0.471 0.275 0.465 0.304 0.408 0.290 0.424 0.275 1.003 0.748
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• (#2) web-search: consists of web-search counts collected over
ten years related to beer queries on Google [3].

• (#3) chicken-dance, (#4) exercise: were obtained from the CMU
motion capture database [1] and consist of four dimensional
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We compared our algorithm with the following seven baselines for
causal discovery, namely CASPER [34], DARING [26], NoCurl [58],
NOTEARS-MLP (NO-MLP) [61], NOTEARS [60], LiNGAM [50],
and GES [10]. Besides, we also compared with the �ve following
competitors for forecasting, namely TimesNet [56], PatchTST [41],
DeepAR [47], OrbitMap [37], and ARIMA [7]. Details regarding the
experimental settings are also provided in Appendix B.1.
Q1. E�ectiveness.We �rst demonstrated how e�ectivelyM����
P���� discovers the time-evolving causality and forecasts future
values in a streaming fashion using the epidemiological data stream
(i.e., #1 covid19). Recall that Figure 1 showsM���P���� modeling
and forecasting results. Figure 1 (a/b) shows graphical representa-
tions of the causal adjacency matrix H and the eigenvalues ⇤. Most
importantly, the causal relationships evolve over time in accordance
with the transitions of distinct dynamical patterns in the inherent
signals K .M���P���� can continuously detect new actual causative
events around the world (e.g., the discovery of a new lineage of the
coronavirus in South Africa, the abrupt increase in coronavirus in-
fections in the United States, and the strict, long-term lockdown in

Shanghai). Figure 1 (c) shows stream forecasting results. There has
been multiple distinct patterns (e.g., a rapid decrease in infections
numbers in the Republic of South Africa),M���P���� adaptively
captures the exponential patterns and forecasts future values close
to the originals.
Q2-1. Causal discovering accuracy. We next showed how ac-
curatelyM���P���� can discover the time-evolving causality. We
reported the structural Hamming distance (SHD) and the structural
intervention distance (SID) [45]. SHD quanti�es the di�erence in
the causal adjacency matrix by counting missing, extra, and re-
versed edges and SID is particularly suited for evaluating causal
discovering accuracy since it counts the number of couples (8, 9)
such that the interventional distribution ? (G 9 | do(-8 = Ḡ)) would
be miscalculated if we used the estimated causal adjacency ma-
trix. Both metrics should be lower to represent better estimated
adjacency matrix. Table 3 shows the causal discovering results of
M���P���� and its baselines for various synthetic datasets, where
the best and second-best levels of performance are shown in bold
and underlined, respectively. Our method outperformed all base-
lines for every temporal sequence, which is consistent with the
analysis provided in Lemma 2. This is because none of the competi-
tors can handle the time-evolving causality in data streams.
Q2-2. Forecasting accuracy. We evaluated the quality of M���
�P���� in terms of ;B -steps-ahead forecasting accuracy. For this
evaluation, we adopted the root mean square error (RMSE) and the
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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Figure 1: Modeling power of M���P���� over an epidemi-
ological data stream (i.e., #1 covid19): This original stream
consists of daily COVID-19 infection numbers in �ve major
countries. Our proposed method can (a) discover the causal
relationships, which change over time, (b) extract the eigen-
values of the latent dynamics providing insight into them in
terms of decay rate and temporal frequency, and (c) forecast
future value in a stream fashion.

we need to capture latent temporal dynamics in univariate time
series to discover the time-evolving causality. However, it is chal-
lenging to design an appropriate system for univariate time series
because the latent temporal dynamics in the system are generally
multi-dimensional, and so a single dimension is insu�cient for mod-
eling the system. We solve this issue by expressing univariate time
series as the superposition of computed basis vectors (i.e., modes)
associated with decay rate and temporal frequency. (ii) Distinct
dynamical patterns: Data streams typically contain various types
of distinct dynamical patterns, and they are factors that change
causal relationships over time. It is essential to understand their
changes if we are to model an entire data stream e�ectively. For
example, in the context of web search activities, we can identify
various types of pattern changes caused by a multitude of reasons,
such as a new item release. In addition, the event in�uences sales of
other items, so the causal relationships could also change. We refer
to these distinct dynamical patterns in data streams as “regimes.”

In this paper, we present M���P����1, which simultaneously
and continuously discovers time-evolving causality in a multivari-
ate co-evolving data stream and forecasts future values. In addition,
thanks to desirable features of modes,M���P���� extracts the tem-
poral behavior of the latent dynamics in each exogenous variable
in terms of decay rate and temporal frequency by analyzing the
corresponding eigenvalues.
1Our source codes and datasets are available at [4]

In short, the problem we deal with is as follows:
Given: a semi-in�nite multivariate data stream ^ , which consists of
3-dimensional vectors x (C), i.e., ^ = {x (1), ..., x (C2 ), ...}, where C2 is
the current time,

• Find distinct dynamical patterns (i.e., regimes),
• Discover causal relationships that changes in accordance with
the transitions of regimes (i.e., time-evolving causality),

• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),
continuously and quickly, in a streaming fashion.

1.1 Preview of Our Results
Figure 1 shows the results obtained with M���P���� for modeling
an epidemiological data stream (i.e., #1 covid19). This dataset con-
sists of the number of COVID-19 infected patients in �ve countries
(i.e., Japan, the United States, China, Italy, and the Republic of South
Africa). Our method captures the following properties:
Time-evolving causality. Figure 1 (a) shows the causal relation-
ships between observations, which change over time. The arrows
indicate causality: the base of each arrow represents the “cause,”
while the head represents the “e�ect.” M���P���� successfully dis-
covers the time-changing causal relationships between countries
from an epidemiological data stream. For example, Figure 1 (a-i)
shows that the Republic of South Africa had a causal in�uence on
other countries. This �nding corresponds to the fact that health
o�cials announced the discovery of a new lineage of the coron-
avirus, namely 501.V2, in South Africa on December 18, 2020 [18],
and indicates that M���P���� adaptively discovered the in�uence
of the new coronavirus on other countries. Additionally, Figure 1
(a-ii) shows that China had a causal in�uence on other countries in
contrast to Figure 1 (a-i). This insight aligns with the period of one
of the longest and toughest lockdowns in Shanghai, which lasted
from early April 2022 to June 1, 2022 [8]. It implies thatM���P����
detected the in�uence of the spread of coronavirus infection in
Shanghai, which led to a strict and long-term lockdown. In sum-
mary, the above discussions make it clear that M���P���� can
capture the transitions of distinct dynamical patterns in an epidemi-
ological data stream and adaptively discover causal relationships at
any given moment.
Latent temporal dynamics. Figure 1 (b) shows the eigenvalues
of latent temporal dynamics in exogenous variables. These �gures
represent complex planes. The dotted gray lines are unit circles,
and colored points are eigenvalues of latent temporal dynamics,
whose magnitude and argument indicate the decay rate and tem-
poral frequency of a speci�c mode, respectively. Speci�cally, if the
absolute value of an eigenvalue is greater than 1, the corresponding
mode exhibits growth; if it is less than 1, it exhibits decay (please
see Section 3.1.1 for a detailed approach to reading these compo-
nents). Figure 1 (b-i) shows the weak growth modes in exogenous
variables for the Republic of South Africa, and implies an increase
in infections in South Africa due to 501.V2 mentioned above. Figure
1 (b-ii) shows the strong growth modes in exogenous variables for
the United States, where new infections surpassed 1 million in a
single day for the �rst time [16]. Figure 1 (b-iii) shows the decay of
exogenous variables for China. This period was toward the end of
the lockdown in Shanghai, indicating that the spread of infections
was beginning to ease, our result captures this precisely.
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L���� 1 (T��� ���������� �� R�����C�������). The time
complexity of R�����C������� is $ (# (32 + ⌘2) + :3), where : =
max8 (:8 ). Please see Appendix B for details.

4.2 Proposed streaming algorithm
Our next step is to answer the most important question: how can
we employ our proposed model for identifying the causal adjacency
matrix H from the demixing matrix] 2 ) and forecasting future
values in a streaming fashion? Before turning to the main topic, we
provide the de�nitions of some key concepts.

D��������� 6 (U����� ���������: 8). Let 8 be a parameter
set for updating a regime \ , i.e., 8 = {{V(8 ) }38=1, {& (8 ) }38=1}, where
V(8 ) = (X (8 )SX>

(8 ) )
�1 and & (8 ) is the energy.

D��������� 7 (F��� ��������� ���: F ). Let F be a full pa-
rameter set of M���P����, i.e., F = {⇥,⌦}, where ⇥ and ⌦ con-
sist of ' regimes and update parameters, respectively, namely, ⇥ =
{) 1, ..., )'}, and ⌦ = {81, ...,8'}.
With the above de�nitions, the formal problem is as follows:

P������ 1. Given a multivariate data stream ^ , where x (C2 ) is
the most recent value at time point C2 ,

• Find the optimal full parameter set, i.e., F = {⇥,⌦},
• Discover the time-evolving causality, i.e., B,
• Forecast an ;B -steps-ahead future value, i.e., v (C2 + ;B ),

Here, we refer to the regime for the current window ^2 = ^ [C< :
C2 ] as )2 , and the update parameter corresponding to )2 as 82 . In
addition, we need the latent vectors Y (C2 ) at the current time C2 for
forecasting an ;B -steps-ahead future value v (C2 + ;B ), and so keep
it as Y24= . In summary, our proposed algorithm keeps them as the
model candidate C = {)2 ,82 , Y24=} for stream processing.

4.2.1 Overview. We now introduce our streaming algorithm,M���
�P����, which consists of the following algorithms.
• M���E��������: Estimates the optimal full parameter set F

and the model candidate C.
• M���G��������: Forecasts an ;B -steps-ahead future value, i.e.,

v (C2 + ;B ), and identi�es the causal adjacency matrix H, using
the model candidate C.

• R�����U������: Updates the current regime )2 using update
parameter 82 and the most recent value x (C2 ).

Algorithm 1 (See Appendix B) provides an overview of M���P����.
Given a new value x (C2 ) at the current time C2 , it updates the full
parameter set F and the model candidate C by usingM���E������
���. Next, it generates an ;B -steps-ahead future value v (C2 + ;B ) and
the causal adjacency matrix H from the demixing matrix] 2 )2

usingM���G��������. Finally, if a new regime is not created, it
also updates the model candidate C with a new value x (C2 ).
4.2.2 M���E��������. Given a new value x (C2 ) at the current time
C2 , we �rst need to update the full parameter set F incrementally
and the model candidate C, which best describes the current win-
dow^2 . Algorithm 2 (See Appendix B) is theM���E�������� algo-
rithm in detail. Here, let 5 (^2 ; Y20, )

2 ) be a new function for estimat-
ing the optimal parameter so that it minimizes the mean square er-
rors between the current window ^2 and the estimated window \2

in Model 2, i.e., 5 (^2 ; Y20, )
2 ) = ÕC2

C=C<+⌘�1 | |x (C)�v (C) | |, where Y
2
0

represents the latent vectors at time point C< +⌘�1. Note that when
embedding the time series using g(·), the number of data points
(namely, the number of columns in the Hankel matrixN ) is partially
reduced compared with before embedding. The most straightfor-
ward way to determine Y20 is to adopt {�†

(8 )g(4 (8 ) (C< + ⌘ � 1))}38=1
according to Eq. (3). However, the noisy initial conditions give rise
to unexpected forecasting. Therefore, we optimize Y20 by using the
Levenberg-Marquardt (LM) algorithm [42] and thus enable the ef-
fects of noise in observations to be removed. Here, we return to the
M���E�������� algorithm, which proceeds as follows:
I. It optimizes initial condition Y20 , so that it minimizes the errors

between the current window ^2 and the current regime )2 .
II. If 5 (^2 ; Y20, )

2 ) > g , it searches for a better regime ) 2 ⇥.
III. If 5 (^2 ; Y20, )

2 ) > g still holds, it creates a new regime for ^2

using R�����C�������, and inserts it into ⇥.

4.2.3 M���G��������. The next algorithm is M���G��������,
which incrementally forecasts an ;B -steps-ahead future value v (C2 +
;B ) and identi�es the causal adjacency matrix H by using the model
candidate C. As for forecasting, it generates the value of v (C2 + ;B )
according to Eq. (3) with the most suitable regime )2 for ^2 , which
is selected by M���E��������. On the other hand, we identify
the causal adjacency matrix H from the demixing matrix] 2 )2 .
A mixing matrix (i.e., the inverse of a demixing matrix) typically
has the two major indeterminacies: the order and scaling of the
independent components; however, we must address the above
di�culties if we are to identify the optimal causal adjacency ma-
trix. The algorithm for resolving the above indeterminacies and
identifying the causal adjacency matrix H proceeds as follows:
I. Find the permutation of rows of ] that yields a matrix ]̃

without any zeros on the main diagonal.
II. Divide each row of ]̃ by its corresponding diagonal element

to yield a new matrix ]̃ 0 with all ones on the diagonal.
III. Compute an estimate Ĥ of H using Ĥ = O � ]̃ 0.
IV. Finally, to �nd a causal order, compute the permutation matrix

Q of Ĥ that yields a matrix H̃ = QĤQ>, which minimizes the
sum of the elements in the upper triangular part of H̃.

This algorithm resolves two major indeterminacies in a mixing
matrix in steps I and II. Moreover, it �nds the causal order, in other
words, it removes the insu�cient connection in step IV. The causal
relationships are already identi�ed up to step III, but this step is
important for visualizing the resulting directed acyclic graph.

L���� 2 (C����� ���������������). Causal discovery in M���
�P���� is equivalent to �nding the causal adjacency matrix H in
M���G��������. Please see Appendix B for details.

This lemma demonstrates theoretically that our proposed algorithm
is capable of discovering causal relationships.

4.2.4 R�����U������. Finally, when an existing regime is selected
as the current regime )2 from the regime set ⇥, we update its pa-
rameters (i.e.,] ,D(1) , ...,D(3 ) ) using a new value x (C2 ) to ensure
that this regime represents a more sophisticated dynamical pattern.
In short, R�����U������ has two parts: (i) update the demixing ma-
trix] and (ii) update each self-dynamics factor setD(8 ) . In part (i),
we use an algorithm based on adaptive �ltering techniques [26, 60].
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

Modes (Spatial dynamics)

: 𝑘!-dimensional space

: Projection (ℂ"! → ℝ)
Augmentaion

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’25, August 3–7, 2025, Toronto, Canada Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Im

Re

frequency

decay rate

! !

∠	!!

eigenvalue !!

Interpretability of modes

(1 ≤ $ ≤ %!)

Inherent signal !(")
!(")

" − ℎ + 1

ℎ "(")ℎ

'"
'"

'" #(")
,

Self-dynamics factor set ((")

"

⇓

Hankel matrix

) ⇓

(a) Self-dynamics factor set (i.e., D(8 ) = {�(8 ) ,⇤(8 ) })

Multivariate time series !

"

# ⋮
!(")

!($)

Regime parameter set $

,
#

#

"%$

Mixing matrix

,

#

#

"%$

Inherent signals %
#($)

#(")
"

⋮

Causal
relationship $

#(&)⇓ ⇓

(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

/ self-dynamics factor set

How to get time-changing causal relationships?

• For example, the emergence of a new virus strain in a 
country leads to an increase in the number of 
infections in other countries
🧐
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Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [16] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [15, 34, 46, 52]. TICC [25] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 24, 30, 39]. OrbitMap [40] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [35, 44, 50, 62, 65]. TimesNet [59] is a
TCN-based method that transforms a 1D time series into 2D space
based on multiple periods and captures complex temporal varia-
tions for forecasting. Although deep learning-based methods are
compelling, their applicability to forecasting in a streaming fashion
is limited due to the prohibitively high computational costs asso-
ciated with time series analysis, which hinders continuous model
updating with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [20, 27, 28,
36, 53] and addressing challenges based on the concept of causal-
ity [13, 37, 49, 58]. NOTEARS [63] is a new di�erentiable optimiza-
tion framework with an acyclic regularization term, serving as an
equivalent to a combinatorial constraint. Granger causality [22]
has been widely used to analyze temporal causal relationships.
Speci�cally, typical causality represents whether one observation
causes another, while Granger causality represents whether one
observation forecasts another [23]. In this paper, we focus on the
cause-and-e�ect relationships that evolve over time in a data stream.
We try to discover them based on the structural equationmodel [47],
which is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we
use in this paper are described in Appendix A. Here, before in-
troducing the main topic, we brie�y describe the principles and
concepts of M���P����. We design our proposed model based
on the structural equation model (SEM) [47], which is written as
^sem = Hsem^sem + Ksem, where ^sem is the observed variables,
Hsem is the causal adjacency matrix, and Ksem is a set of mutually
independent exogenous variables with a non-Gaussian distribution.
Note that we assume that the data generating process is linear, the
causal network is a directed acyclic graph, and there are no unob-
served confounders in this paper. The structural equation model
can express a typical causality, however, in real-world applications,
causal relationships change over time in accordance with the tran-
sitions of distinct dynamical patterns. In our model, we assume that
the exogenous variables behave as a dynamical system; however, it
is inappropriate to consider their evolution as a single dynamical
system due to their independence from each other.

In summary, given an multivariate data stream, which contains
various distinct dynamical patterns (i.e., regimes), we aim to sum-
marize those streams and discover the time-evolving causality in a
streaming fashion on the above assumption. Speci�cally, we need
to capture the following properties to achieve the above objective:
(P1) latent temporal dynamics of exogenous variables
(P2) dynamical pattern in a single regime

So, how can we build our model that expresses both (P1) and (P2)?
What is the acceptable mathematical model that summarizes a data
stream and discovers the time-evolving causality? To handle (P1),
we express each of the exogenous variables as the superposition of
computed basis vectors (i.e., modes). We model (P2) by combining
the above components. We provide detailed answers below.

3.1 Proposed solution:M���P����
We now present our model in detail. First, we provide the de�nition
for our proposed method.

D��������� 1 (I������� �������: K ). Let K be a bundle of 3
mutually independent signals with a non-Gaussian distribution, i.e.,
K = {e (8 ) }38=1, where e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)} is the 8-th univariate
inherent signal. The main property is that they evolve over time.

Figure 2 is an overview of our proposed model. In the �rst half
of this section, we describe (P1) the latent temporal dynamics of
the 8-th univariate inherent signal e (8 ) by introducing the self-
dynamics factor set D(8 ) , and next, we propose the parameter set
) to represent (P2) regimes and an entire data stream.

3.1.1 Latent temporal dynamics of an inherent signal (P1). First,
we answer the fundamental question, namely, how can we extract
the latent temporal dynamics from the 8-th inherent signal (i.e.,
e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)}) and express it as a superposition of the
modes? The di�culty arises from the fact that the latent dynamics
in the system are generally multi-dimensional, making a single
dimension inadequate for modeling the system. Here, we utilize
state space augmentation methods to compensate for this inade-
quacy. In particular, we adopt time-delay embedding, which are
e�ective in capturing non-linear dynamics. Speci�cally, this is an
established method for the geometric reconstruction of attractors
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work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [16] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [15, 34, 46, 52]. TICC [25] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 24, 30, 39]. OrbitMap [40] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [35, 44, 50, 62, 65]. TimesNet [59] is a
TCN-based method that transforms a 1D time series into 2D space
based on multiple periods and captures complex temporal varia-
tions for forecasting. Although deep learning-based methods are
compelling, their applicability to forecasting in a streaming fashion
is limited due to the prohibitively high computational costs asso-
ciated with time series analysis, which hinders continuous model
updating with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [20, 27, 28,
36, 53] and addressing challenges based on the concept of causal-
ity [13, 37, 49, 58]. NOTEARS [63] is a new di�erentiable optimiza-
tion framework with an acyclic regularization term, serving as an
equivalent to a combinatorial constraint. Granger causality [22]
has been widely used to analyze temporal causal relationships.
Speci�cally, typical causality represents whether one observation
causes another, while Granger causality represents whether one
observation forecasts another [23]. In this paper, we focus on the
cause-and-e�ect relationships that evolve over time in a data stream.
We try to discover them based on the structural equationmodel [47],
which is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we
use in this paper are described in Appendix A. Here, before in-
troducing the main topic, we brie�y describe the principles and
concepts of M���P����. We design our proposed model based
on the structural equation model (SEM) [47], which is written as
^sem = Hsem^sem + Ksem, where ^sem is the observed variables,
Hsem is the causal adjacency matrix, and Ksem is a set of mutually
independent exogenous variables with a non-Gaussian distribution.
Note that we assume that the data generating process is linear, the
causal network is a directed acyclic graph, and there are no unob-
served confounders in this paper. The structural equation model
can express a typical causality, however, in real-world applications,
causal relationships change over time in accordance with the tran-
sitions of distinct dynamical patterns. In our model, we assume that
the exogenous variables behave as a dynamical system; however, it
is inappropriate to consider their evolution as a single dynamical
system due to their independence from each other.

In summary, given an multivariate data stream, which contains
various distinct dynamical patterns (i.e., regimes), we aim to sum-
marize those streams and discover the time-evolving causality in a
streaming fashion on the above assumption. Speci�cally, we need
to capture the following properties to achieve the above objective:
(P1) latent temporal dynamics of exogenous variables
(P2) dynamical pattern in a single regime

So, how can we build our model that expresses both (P1) and (P2)?
What is the acceptable mathematical model that summarizes a data
stream and discovers the time-evolving causality? To handle (P1),
we express each of the exogenous variables as the superposition of
computed basis vectors (i.e., modes). We model (P2) by combining
the above components. We provide detailed answers below.

3.1 Proposed solution:M���P����
We now present our model in detail. First, we provide the de�nition
for our proposed method.
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mutually independent signals with a non-Gaussian distribution, i.e.,
K = {e (8 ) }38=1, where e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)} is the 8-th univariate
inherent signal. The main property is that they evolve over time.

Figure 2 is an overview of our proposed model. In the �rst half
of this section, we describe (P1) the latent temporal dynamics of
the 8-th univariate inherent signal e (8 ) by introducing the self-
dynamics factor set D(8 ) , and next, we propose the parameter set
) to represent (P2) regimes and an entire data stream.

3.1.1 Latent temporal dynamics of an inherent signal (P1). First,
we answer the fundamental question, namely, how can we extract
the latent temporal dynamics from the 8-th inherent signal (i.e.,
e (8 ) = {4 (8 ) (1), ..., 4 (8 ) (C)}) and express it as a superposition of the
modes? The di�culty arises from the fact that the latent dynamics
in the system are generally multi-dimensional, making a single
dimension inadequate for modeling the system. Here, we utilize
state space augmentation methods to compensate for this inade-
quacy. In particular, we adopt time-delay embedding, which are
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