
アルゴリズム - 以下の4つのステップで構成される
Step 1: ModeEstimator
適切なレジーム 𝜽! を探索
Step 2: RegimeCreation
未知のパターンの場合，
カレントウィンドウ 𝑿!
からレジーム 𝜽! を推定
Step 3: ModeGenerator
因果隣接⾏列 𝑩 の推定と
𝑙" ステップ先の値の予測
Step 4: RegimeUpdater
最新の観測 𝒙(𝑡!) を⽤いて
レジーム 𝜃! の更新

提案モデル - ModePlait モデル
1. 構造⽅程式モデル [Pearl 2009]

2. 固有信号の潜在的な時間ダイナミクス

3. 特徴的な時系列パターン

 

4. レジームの動的遷移
• 要約のためにレジームセット 𝚯 = 𝜃#, 𝜃$, … , 𝜃% を利⽤
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
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研究背景
時系列データストリーム
• 幅広い分野で⽇々社会の中で⽣成され続けている
• 観測され続ける最新のデータを⽤いてモデルを更新可能な⼿法

の需要が⾼まっている
変数間の関係性
• e.g., 相関関係，因果関係，独⽴性
• 因果関係：変数間の原因と結果を意味する関係性

• 時系列分析の精度向上のために⻑年活⽤され続けている
研究課題
• 既存⼿法の⼤半は因果関係が時系列データ内で変動しないこと

を仮定している [Runge 2018]
• 環境の移り変わりによって因果関係が変動することを考慮する

と，この仮定は限定的であるといえる
• e.g., 新商品の発売により既製品の売り上げが低下する

 

✨ ModePlait: 最新のストリーミング⼿法案
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時間変化する因果関係の抽出に基づいた⾼速将来予測

まとめ - ModePlait は以下の特性を全て満たす
Effective: 特徴的な時系列パターン (レジーム) の遷移に基づ
いて時間変化する因果関係を抽出する
Accurate: 理論的に因果関係を抽出し，正確に将来を予測す
ることで最新の⽐較⼿法を上回る精度を達成した
Scalable: データの⻑さに依存しない⾼速な処理が可能である

問題定義
Given: 時系列データストリーム 𝑿 = 𝒙 1 ,… , 𝒙 𝑡! , …
Goal: 以下の重要な課題を全て達成する
• 特徴的な時系列パターン (レジーム) の発⾒
• 時間変化する因果関係の抽出
• 𝑙" ステップ先の値の予測
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Table 1: Capabilities of approaches.
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Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for

Table 2: Symbols and de�nitions.

Symbol De�nition

3 Number of dimensions
C2 Current time point
^ Co-evolving multivariate data stream (semi-in�nite)
^

2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#

⌘ Embedding dimension
g( ·) Observable for time-delay embedding, i.e., 6 : R! R⌘
N Hankel matrix
: Number of modes
� Modes of the system, i.e., � 2 R⌘⇥:
⇤ Eigenvalues of the system, i.e., ⇤ 2 R:⇥:
] Demixing matrix, i.e.,] = [w1, ...,w3 ]> 2 R3⇥3
H Causal adjacency matrix, i.e., H 2 R3⇥3

e (C ) Inherent signal at time point C , i.e., e (C ) = {4 (8 ) (C ) }38=1
Y (C ) Latent vectors at time point C , i.e., Y (C ) = {s (8 ) (C ) }38=1
v (C ) Estimated vector at time point C , i.e., v (C ) = {E(8 ) (C ) }38=1
D Self-dynamics factor set, i.e., D = {�,⇤}
) Regime parameter set, i.e., ) = {] , D(1) , ..., D(3 ) }
' Number of regimes
⇥ Regime set, i.e., ⇥ = {) 1, ..., )' }
B Time-evolving causality, i.e., B = {H1, ...,H' }
⌦ Update parameter set, i.e., ⌦ = {81, ...,8' }
F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATEDWORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for

Table 2: Symbols and de�nitions.

Symbol De�nition

3 Number of dimensions
C2 Current time point
^ Co-evolving multivariate data stream (semi-in�nite)
^

2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#

⌘ Embedding dimension
g( ·) Observable for time-delay embedding, i.e., 6 : R! R⌘
N Hankel matrix
: Number of modes
� Modes of the system, i.e., � 2 R⌘⇥:
⇤ Eigenvalues of the system, i.e., ⇤ 2 R:⇥:
] Demixing matrix, i.e.,] = [w1, ...,w3 ]> 2 R3⇥3
H Causal adjacency matrix, i.e., H 2 R3⇥3

e (C ) Inherent signal at time point C , i.e., e (C ) = {4 (8 ) (C ) }38=1
Y (C ) Latent vectors at time point C , i.e., Y (C ) = {s (8 ) (C ) }38=1
v (C ) Estimated vector at time point C , i.e., v (C ) = {E(8 ) (C ) }38=1
D Self-dynamics factor set, i.e., D = {�,⇤}
) Regime parameter set, i.e., ) = {] , D(1) , ..., D(3 ) }
' Number of regimes
⇥ Regime set, i.e., ⇥ = {) 1, ..., )' }
B Time-evolving causality, i.e., B = {H1, ...,H' }
⌦ Update parameter set, i.e., ⌦ = {81, ...,8' }
F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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time series analysis, which hinders continuous model updating
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widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.
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In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
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particular, streaming algorithms have become more critical in terms
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itations, and they have proved highly signi�cant to the data mining
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general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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itations, and they have proved highly signi�cant to the data mining
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general method focusing on stream forecasting, and it can �nd the
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
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in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
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alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
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in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that潜在変数 固有値⾏列
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Table 5: Ablation study results with forecasting steps ;B 2 {5, 10, 15} for both synthetic and real-world datasets.

Datasets #0 synthetic #1 covid19 #2 web-search #3 chicken-dance #4 exercise

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

M���P���� (full) 5 0.722 0.528 0.588 0.268 0.573 0.442 0.353 0.221 0.309 0.177
10 0.829 0.607 0.740 0.361 0.620 0.481 0.511 0.325 0.501 0.309
15 0.923 0.686 0.932 0.461 0.646 0.505 0.653 0.419 0.687 0.433

w/o causality 5 0.759 0.563 0.758 0.374 0.575 0.437 0.391 0.262 0.375 0.218
10 0.925 0.696 0.848 0.466 0.666 0.511 0.590 0.398 0.707 0.433
15 1.001 0.760 1.144 0.583 0.708 0.545 0.821 0.537 0.856 0.533

Figure 4: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis of these graphs is a loga-
rithmic scale. M���P���� is superior to its competitors. It is
up to 1,500x faster than its competitors.

mean absolute error (MAE), both of which provide good results
when they are close to zero. For all methods, we used one-third of
the sequences to tune their parameters. Table 4 presents the over-
all forecasting results, where the best results are in bold and the
second-best are underlined. For brevity, we only reported results of
a representative synthetic dataset, which has the most complicated
temporal sequence, “1, 2, 3, 2, 1”. We compared the two metrics
when we varied the forecasting step (i.e., ;B 2 {5, 10, 15}). Our
method achieved remarkable improvements over its competitors.
While deep learning models (TimesNet, PatchTST, and DeepAR)
exhibit high generality for time series modeling, their forecasting
accuracy was poorer because they could not adjust the model pa-
rameters incrementally. OrbitMap is capable of handling multiple
discrete nonlinear dynamics but misses the time-evolving causality,
and thus was outperformed by our proposed method. ARIMA as-
sumes linear relationships between time series data and so fails to
accommodate complex and nonlinear data resulting in decreased
forecasting accuracy.
Q2-3. Ablation study. To quantitatively evaluate the impact of
causal relationships on forecasting e�ectiveness, we additionally
performed an ablation study by comparing a limited version of our
method, namely w/o causality, whose demixing matrix] was �xed
to the identity matrix. Table 5 presents the overall results of our
ablation study on M���P���� using both synthetic and real-world
datasets. We can see that the w/o causality causes a signi�cant drop
in forecasting accuracy across all experimental settings. Therefore,
we observed that the discovery of time-evolving causality in data
streams boosts forecasting accuracy.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 4 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computational time at each time point C2 on the left, and the
average computational time on the right. Note that both �gures are

shown on linear-log scales. Our method consistently outperformed
its competitors in terms of computational time thanks to our in-
cremental update, which aligns with the discussion presented in
Lemma 3. OrbitMap was competitive, but it estimates model pa-
rameters via iterative optimization, the expectation-maximization
algorithm, which makes it slower than our proposed algorithm.
Other methods require a signi�cant amount of learning time be-
cause they cannot update their models incrementally.

6 Conclusion
In this paper, we focused on the summarization of an entire data
stream, discovering the time-evolving causality in data streams,
and forecasting future values incrementally. Our proposed method,
namelyM���P����, exhibits all of the following desirable proper-
ties that we listed in the introduction:

• It is E�ective: It provides the time-evolving causality, namely
insightful time-changing causal relationships in data streams.

• It is Accurate: Our experiments demonstrated that M���P����
precisely discovers the time-evolving causality and forecasts
future values in a streaming fashion.

• It is Scalable: The computational time for our proposed algo-
rithm does not depend on the data stream length.
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

4

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’25, August 3–7, 2025, Toronto, Canada Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Im

Re

frequency

decay rate

! !

∠	!!

eigenvalue !!

Interpretability of modes

(1 ≤ $ ≤ %!)

Inherent signal !(")
!(")

" − ℎ + 1

ℎ "(")ℎ

'"
'"

'" #(")
,

Self-dynamics factor set ((")

"

⇓

Hankel matrix

) ⇓

(a) Self-dynamics factor set (i.e., D(8 ) = {�(8 ) ,⇤(8 ) })

Multivariate time series !

"

# ⋮
!(")

!($)

Regime parameter set $

,
#

#

"%$

Mixing matrix

,

#

#

"%$

Inherent signals %
#($)

#(")
"

⋮

Causal
relationship $

#(&)⇓ ⇓

(b) Single regime parameter set (i.e., ) = {] ,D(1) , ...,D(3 ) })
Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
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for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
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As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
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As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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Figure 2: Illustration of M���P����: (a) we extract the latent temporal dynamics from the 8-th univariate inherent signal e (8 ) ,
which behaves as a dynamical system. (b) The multivariate time series is described by mixing matrix]�1 and a collection of 3
self-dynamics factor sets {D(1) , ...,D(3 ) }. The mixing matrix]�1 is not the same matrix as the causal adjacency matrix H, it is
instrumental in identifying the time-evolving causality.

for non-linear systems based on the measurement of generic ob-
servables, g(4 (8 ) (C)) B (4 (8 ) (C), 4 (8 ) (C � 1), ..., 4 (8 ) (C �⌘ + 1)) 2 R⌘ ,
where ⌘ is the embedding dimension. We form the Hankel matrix
N (8 ) 2 R⌘⇥ (C�⌘+1) by using the above observable g(·).

N (8 ) =
266664

| | |
g(4 (8 ) (⌘)) g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

| | |

377775
(1)

As seen in Eq. (1), each state represented by a single measurement
function is augmented with its past history. Furthermore, according
to Takens’ embedding theorem [55], it is guaranteed that time-delay
embedding produces a vector whose dynamics are di�eomorphic
to the dynamics of the original state under certain conditions. In-
tuitively, the reconstruction theoretically preserves the properties
of the original dynamical system, allowing an analysis of Hankel
matrix to reveal important features that may not be directly ob-
servable from the original data alone. In many cases, an embedding
dimension may be chosen without sacri�cing the di�eomorphism.

We now use the above state space description to extract the latent
temporal dynamics expressed as the superposition of the modes
from the 8-th univariate inherent signal e (8 ) . We thus introduce a
time-evolving activity for describing the dynamical system of the
8-th inherent signal e (8 ) . This activity is a latent vector s (8 ) (C) 2
C:8 , which is :8 -dimensional complex-valued latent vector at time
point C , where :8 is the number of modes. This vector plays a
role in determining the 8-th inherent signal 4 (8 ) (C) at time point C .
Consequently, the dynamical system for the 8-th univariate inherent
signal e (8 ) can be described with the following equations:

M���� 1. Let s (8 ) (C) be the latent vector at time point C . The
following equations govern the 8-th univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) is the inverse of the observables g(·), each column of
�(8 ) is one mode, and ⇤(8 ) is a set of :8 eigenvalues.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the obser-
vation projections that generate the 8-th inherent signal 4 (8 ) (C) at
each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:
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M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern our single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] is a precursor to the causal adjacency matrix H.

Furthermore, wewant to detect the transitions of distinct dynamical
patterns. The transitions induce changes in causal relationships.
Let ' denote the proper number of regimes up to the time point
C . Then, a data stream ^ is summarized using a set of ' regimes
(i.e., ) 1, ..., )' ). Consequently, a regime set for a data stream ^ and
time-evolving causality are de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������: B). Let B be a pa-
rameter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 2 ) 8 is
a causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 OPTIMIZATION ALGORITHM
Thus far, we have shown how we represent the demixing matrix] ,
which can be transformed into causal adjacency matrix H, within
each regime in a data stream ^ . In this section, we present an e�ec-
tive algorithm with which to identify the time-evolving causality
B and estimate the regime set ⇥ of M���P����. Figure 3 shows
our proposed algorithm. We �rst present an e�ective way to create
a new regime from a multivariate time series, where we assume it
has only a single regime. We then describe a streaming algorithm
to identify B and maintain ⇥ incrementally for multiple distinct
dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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Figure 3: Overview of M���P���� algorithm: Given a data
stream ^ , it performs all the following tasks at every time
point C2 . Firstly, it searches for the best regime )2 for the cur-
rent window ^2 . It then forecasts the ;B -steps-ahead future
value, i.e., v (C2 + ;B ) by utilizing the best one. When the algo-
rithm encounters an unknown pattern in ^2 , it estimates a
new regime ) and inserts it into ⇥.
computing the 8-th self-dynamics factor set D(8 ) , assume that we
have the following data matrices based on the Hankel matrix N (8 ) :

R (8 ) =
⇥
g(4 (8 ) (⌘ + 1)) · · · g(4 (8 ) (C))

⇤
2 R⌘⇥ (C�⌘)

X (8 ) =
⇥
g(4 (8 ) (⌘)) · · · g(4 (8 ) (C � 1))

⇤
2 R⌘⇥ (C�⌘)

And, we use the following weight cost function:

min
G

C�1’
C 0=⌘

`2(C�1�C
0 ) | |g(4 (8 ) (C 0 + 1)) �G(8 )g(4 (8 ) (C 0)) | |22

=min
G

| | (R (8 ) �G(8 )X (8 ) )S | |2�

(4)

where, G(8 ) is the transition matrix, from which the eigendecom-
position yields the modes �(8 ) and the corresponding eigenvalues
⇤(8 ) , and S = diag(`C�⌘�1, ..., `0) 2 R(C�⌘)⇥ (C�⌘) is de�ned as a
forgetting matrix, based on the recursive least squares principle. In
addition, according to Koopman theory [33], while the transition
matrix G(8 ) is a linear operator, it is applicable even to nonlinear
dynamical systems, unlike the classical modal decomposition of
linear time-invariant systems. Speci�cally, the analytical algorithm
proceeds as follows:
I. Compute the ICA of ^ =]�1K .
II. Form the Hankel matrix N (8 ) according to Eq. (1).
III. Build a pair of data matrices (R (8 ) , X (8 ) ).
IV. Compute the SVD of X (8 )S = [(8 )⌃(8 )\>

(8 ) . We automatically
determine the optimal number of singular values :8 by [21]

V. Project the transition matrix G(8 ) onto the :8 -dimensional sub-
space spanned by the left singular vector [ (8 ) .

G̃(8 ) = [>
(8 )G(8 )[(8 ) = [>

(8 )R (8 )S\(8 )⌃
�1
(8 ) 2 R

:8⇥:8

VI. Compute the eigendecomposition of G̃(8 )` (8 ) = ` (8 )⇤(8 ) . Note
that the eigenvalues ⇤(8 ) are identical to the :8 dominant eigen-
values ofG(8 ) because the left singular vector [(8 ) is an orthog-
onal matrix.

VII. Compute the modes �(8 ) = [(8 )` (8 ) .
5
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We now extract the latent temporal dynamics expressed as the
superposition of the modes from the 8-th univariate inherent signal
e (8 ) using the above method. We thus introduce a time-evolving
activity for describing the dynamical system of the 8-th inherent
signal e (8 ) . This activity is a latent vector s (8 ) (C) 2 C:8 , which is
:8 -dimensional complex-valued latent vector at time point C , where
:8 is the number of modes. Consequently, the dynamical system
for the 8-th univariate inherent signal e (8 ) can be described with
the following equations:

M���� 1. Let s (8 ) (C) be the :8 -dimensional latent vector at time
point C for 8 2 {1, . . . ,3}. The following equations govern the 8-th
univariate inherent signal e (8 ) ,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C))

(2)

where g�1 (·) : R⌘ ! R is the inverse of the observables g(·), each
column of �(8 ) is one mode, and ⇤(8 ) is a diagonal matrix containing
the :8 eigenvalues corresponding to those modes.

Note that the latent vector s (8 ) (C) is expressed as a superposition of
:8 modes. The eigenvalues ⇤(8 ) 2 C:8⇥:8 describe latent dynamical
activities, and the modes �(8 ) 2 C⌘⇥:8 and g�1 (·) are the observa-
tion projections that generate the 8-th univariate inherent signal
4 (8 ) (C) at each time point C . Consequently, we have the following:

D��������� 2 (S������������ ������ ���: D(8 ) ). Let D(8 ) be
a set of modes �(8 ) and eigenvalues ⇤(8 ) , i.e., D(8 ) = {�(8 ) ,⇤(8 ) },
which represents the latent temporal dynamics of the 8-th univariate
inherent signal 4 (8 ) .

We can interpret the features of the above model by focusing on the
self-dynamics factor set D(8 ) . Speci�cally, the eigenvalues ⇤(8 ) im-
ply the temporal dynamics of the modes �(8 ) , such as exponential
growth/decay and oscillations. These are derived from a character-
istic of a discrete dynamical system. Considering the eigenvalues
⇤(8 ) represent the behavior of a discrete dynamical system with
sampling interval �C , decay rate 0 and temporal frequency 1 of the
9-th mode i 9 are shown as follows, using the 9-th eigenvalue _ 9 :

0 =
Re(log _ 9 )

�C
, 1 =

Im(log _ 9 )
�C

where Re and Im are the real and imaginary parts, respectively. In
addition, note that log _ 9 = ln |_ 9 | + 8 arg _ 9 , and it can be said that
the decay rates and temporal frequencies of the modes are given by
the absolute values and arguments of the eigenvalues, respectively.

3.1.2 Dynamical pa�ern in a single regime (P2). Thus, we have seen
how to model the latent temporal dynamics of the 8-th univariate
inherent signal e (8 ) using self-dynamics factor setD(8 ) . Here, let us
tackle the next question, namely how can we describe the major dy-
namical pattern (i.e., regime) considering the time-evolving causal-
ity between observations in a data stream? We establish a model to
combine the 3 self-dynamics factor sets (i.e.,D(1) , ...,D(3 ) ) for gen-
erating the estimated vector v (C) 2 R3 at time point C . Also, we need
a set of 3 latent vectors (i.e., Y (C) = {s (8 ) (C)}38=1). Consequently, we
extend Model 1, and the dynamical system for 3-dimensional mul-
tivariate time series can be described with the following equations:

M���� 2. Let s (8 ) (C) be the :8 -dimensional latent vector for the
8-th univariate inherent signal 4 (8 ) (C) at time point C , e(C) be the 3-
dimensional inherent signals at time point C (i.e., e(C) = {4 (8 ) (C)}38=1),
and v (C) be the 3-dimensional estimated vector at time point C . The
following equations govern the single regime,

s (8 ) (C + 1) = ⇤(8 ) s (8 ) (C) (1  8  3)
4 (8 ) (C) = g�1 (�(8 ) s (8 ) (C)) (1  8  3)
v (C) =]�1e(C)

(3)

In Model 2, we require an additional parameter, demixing matrix] ,
which represents the relationships among 3 inherent signals (i.e.,
e (1) , ..., e (3 ) ) and is instrumental in identifying the time-evolving
causality in data streams. However, there are indeterminacies in a
mixing matrix (i.e., the inverse of a demixing matrix), so it is not
the same matrix as the causal adjacency matrix H. We present the
algorithm for obtaining H from] in Section 4.2.3. Consequently,
we have the following:

D��������� 3 (S����� ������ ��������� ���: ) ). Let ) be a
parameter set of a single regime, i.e., ) = {] ,D(1) , ...,D(3 ) }, where
] serves as the basis for generating the causal adjacency matrix H.

Furthermore, we want to detect the transitions of regimes, which
induce changes in causal relationships. Let ' denote the optimal
number of regimes up to the time point C . Then, a data stream ^ is
summarized using a set of ' regimes (i.e., ) 1, ..., )' ). Consequently,
a regime set for a data stream ^ and time-evolving causality are
de�ned as follows:

D��������� 4 (R����� ���: ⇥). Let ⇥ be a parameter set of mul-
tiple regimes, i.e.,⇥ = {) 1, ..., )'}, which describes multiple distinct
dynamical patterns in an entire data stream.

D��������� 5 (T������������ ���������:B). LetB be a param-
eter set of causal adjacency matrices, i.e., B = {H1, ...,H'}, which
describes time-changing of causal relationships. Note that H8 is a
causal adjacency matrix corresponding to the 8-th regime ) 8 .

4 Optimization Algorithm
Thus far, we have shown how we describe the major dynamical
pattern using the demixing matrix] which can be transformed
into a causal adjacency matrix H. In this section, we present an
e�ective algorithm to identify the time-evolving causality B and
estimate the regime set ⇥. Figure 3 shows an overview of our
proposed algorithm. We �rst present an e�ective way to estimate a
new model parameter set from a multivariate time series, where we
assume it has only a single regime. We then describe a streaming
algorithm to identify B and maintain ⇥ incrementally for multiple
distinct dynamical patterns, simultaneously.

4.1 R�����C�������
We �rst propose an algorithm, namely R�����C�������, for esti-
mating a single regime parameter set \ = {] ,D(1) , ...,D(3 ) } from
a data stream ^ . The algorithm consists of two main steps: (i) it
decomposes ^ into a demixing matrix] and inherent signals K
and (ii) it computes 3 self-dynamics factor sets {D(1) , ...,D(3 ) }
according to Eq. (2). We use ICA for the decomposition of ^ , where
it is essential for identifying the optimal causality. Next, as regards
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(c) 10 日先の予測のスナップショット
図 1: 疫病データストリームに対する ModePlait の出力例．
れぞれが特定のモードの減衰率と時間周波数を示している．具
体的には，固有値の絶対値が 1より大きい場合，対応するモー
ドは増幅を，1より小さい場合は減衰を示す．図 1 (b-i) は，南
アフリカ共和国の外生変数の弱い増幅モードを示しており，南
アフリカ共和国での感染者数が前述の新たな変異株によって増
加したことを意味する．図 1 (b-ii) は，米国における外生変数
の強い増幅モードを示しており，新規感染者数が 1日で初めて
100万人を超えた状況を反映している [23]．図 1 (b-iii) は，中
国に対応する外生変数の減衰モードを示している．この期間は
上海のロックダウンの終わり頃で，感染の拡大が緩和し始めて
いる事実があり，提案手法はこれを正確に捉えているといえる．
図 1 (c) は，現在のウィンドウが与えられた場合の ls = 10

ステップ先の将来予測のスナップショットを示している．青い
縦軸は，現在のウィンドウの開始 tm と現在の時点 tc を，赤
い縦軸は ls ステップ先の時点 tc + ls を示している．また，推
定された値は色付きの太線で示し，元の値は灰色の線で示す．
ModePlait は現在の特徴的な時系列パターンを正確に捉え，
任意の時点で連続的に将来の値を生成する．
1. 2 本論文の貢献
提案手法 ModePlait の主要な貢献点を以下に示す．なお，
本論文の内容は [24]に依拠しているため，全文については同文
献を参照されたい．
• 時系列データ中のレジームの推移を逐次的に捉え続けるこ
とにより，時間変化する因果関係を発見する．

• 因果関係を理論的に発見し，高精度に将来を予測する．
• 計算時間はデータストリーム全体の長さに依存しない．
2 関 連 研 究
時系列モデリングと将来予測．時系列モデリングおよび将来予
測は，多くの分野で大きな関心を集めている非常に重要な分

野である．自己回帰和分移動平均 (ARIMA) [25] やカルマン
フィルター (KF) [26] は，従来のモデリングおよび予測方法の
代表的な例であり，それらの派生型に関する研究も数多く行わ
れている [27–30]．TICC [8] は，マルコフ確率場に基づいて異
なる観測間の相互依存性を特徴付けるが，因果関係を捉える
ことはできない．また，ストリーミング形式に対応可能な手法
は，時間やメモリの制約下で膨大なデータを処理するために不
可欠な存在となっており，データマイニングやデータベース分
野において非常に重要であることが実証されている [3, 31–33]．
OrbitMap [34] は，ストリーム予測に焦点を当てた最新の手法
で，主要な動的時系列パターン間の遷移を見つけることができ
る．ただし，観測間の因果関係を発見することはできない．さ
らに，深層学習モデルによる時系列予測の研究は，近年非常に
活発である [10, 35–38]．深層学習モデルは有力ではあるもの
の，時系列分析に伴う計算コストが非常に高いため，最新の観
測データによるモデルの継続的な更新が困難となり，ストリー
ミング形式の将来予測への適用は限定的である．
因果推論および探索．因果推論や因果探索 [15, 16, 39–41]そし
て，課題解決のための因果の概念の応用 [17,42,43]などに関す
る幅広い研究が長年行われている．NOTEARS [44] は，有向
非巡回グラフ（DAG）の推定問題を，非巡回制約項を組み込ん
だ滑らかな連続最適化問題として定式化した微分可能なフレー
ムワークである．グレンジャー因果 [45] は，時間的な因果関
係を解析するために広く利用されている．しかしながら，グレ
ンジャー因果は変数間の予測的因果関係を示すものであり，典
型的な因果関係とは異なる [46]．具体的には，従来の因果関係
はある観測が原因となって別の観測を引き起こすかどうかを表
すのに対し，グレンジャー因果性はある観測が別の観測の予測
に役立つかどうかを示す [47]．本論文では，時系列データスト
リーム中の時間変化する因果関係の抽出に焦点を当てる．
3 提案モデル
本章では，提案モデルを紹介する．本題に入る前に，Mod-

ePlait の基本的な概念について簡潔に説明する．提案モデル
はXsem = BsemXsem +Esem のように記述される構造方程式
モデル (SEM) [19] に基づいて設計される．ここで，Xsem は
観測変数，Bsem は因果隣接行列，Esem は非ガウス分布を持つ
相互に独立した外生変数である．本論文では，データ生成過程
は線形であり，因果関係を有向非巡回グラフで表現し，未観測
共通原因が存在しないことを仮定する．構造方程式モデルは典
型的な因果関係を表現できるが，実社会に存在する特徴的な時
系列パターンの遷移に応じて時間変化する因果関係は表現でき
ない．そこで，提案モデルは外生変数が動的システムとして振
る舞うと仮定する．しかし，外生変数は互いに独立しているた
め，それらを単一の動的システムとして考えるのは不適切であ
る．これらを踏まえて，本研究では，様々な特徴的な時系列パ
ターン（レジーム）を含む時系列データストリームが与えられ
たとき，時系列データを逐次的に要約し，ストリーミング形式
で時間変化する因果関係を発見することを目指す．

モデル更新⽤パラメータ：
モデル候補：モデルパラメータ集合：

外⽣変数の時間
 変動性に着⽬
 👉 固有信号

単変量データを
 基底ベクトルの
 重ね合わせで表
 現する

固有ダイナミク
 ス集合 𝒟(") のた
 めの更新式
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Table 5: Ablation study results with forecasting steps ;B 2 {5, 10, 15} for both synthetic and real-world datasets.

Datasets #0 synthetic #1 covid19 #2 web-search #3 chicken-dance #4 exercise

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

M���P���� (full) 5 0.722 0.528 0.588 0.268 0.573 0.442 0.353 0.221 0.309 0.177
10 0.829 0.607 0.740 0.361 0.620 0.481 0.511 0.325 0.501 0.309
15 0.923 0.686 0.932 0.461 0.646 0.505 0.653 0.419 0.687 0.433

w/o causality 5 0.759 0.563 0.758 0.374 0.575 0.437 0.391 0.262 0.375 0.218
10 0.925 0.696 0.848 0.466 0.666 0.511 0.590 0.398 0.707 0.433
15 1.001 0.760 1.144 0.583 0.708 0.545 0.821 0.537 0.856 0.533

Figure 4: Scalability of M���P����: (left) Wall clock time vs.
data stream length C2 and (right) average time consumption
for (#4) exercise. The vertical axis of these graphs is a loga-
rithmic scale. M���P���� is superior to its competitors. It is
up to 1,500x faster than its competitors.

mean absolute error (MAE), both of which provide good results
when they are close to zero. For all methods, we used one-third of
the sequences to tune their parameters. Table 4 presents the over-
all forecasting results, where the best results are in bold and the
second-best are underlined. For brevity, we only reported results of
a representative synthetic dataset, which has the most complicated
temporal sequence, “1, 2, 3, 2, 1”. We compared the two metrics
when we varied the forecasting step (i.e., ;B 2 {5, 10, 15}). Our
method achieved remarkable improvements over its competitors.
While deep learning models (TimesNet, PatchTST, and DeepAR)
exhibit high generality for time series modeling, their forecasting
accuracy was poorer because they could not adjust the model pa-
rameters incrementally. OrbitMap is capable of handling multiple
discrete nonlinear dynamics but misses the time-evolving causality,
and thus was outperformed by our proposed method. ARIMA as-
sumes linear relationships between time series data and so fails to
accommodate complex and nonlinear data resulting in decreased
forecasting accuracy.
Q2-3. Ablation study. To quantitatively evaluate the impact of
causal relationships on forecasting e�ectiveness, we additionally
performed an ablation study by comparing a limited version of our
method, namely w/o causality, whose demixing matrix] was �xed
to the identity matrix. Table 5 presents the overall results of our
ablation study on M���P���� using both synthetic and real-world
datasets. We can see that the w/o causality causes a signi�cant drop
in forecasting accuracy across all experimental settings. Therefore,
we observed that the discovery of time-evolving causality in data
streams boosts forecasting accuracy.
Q3. Scalability. Finally, we evaluated the computational time
needed by our streaming algorithm. Figure 4 compares the compu-
tational e�ciencies of M���P���� and its competitors. It presents
the computational time at each time point C2 on the left, and the
average computational time on the right. Note that both �gures are

shown on linear-log scales. Our method consistently outperformed
its competitors in terms of computational time thanks to our in-
cremental update, which aligns with the discussion presented in
Lemma 3. OrbitMap was competitive, but it estimates model pa-
rameters via iterative optimization, the expectation-maximization
algorithm, which makes it slower than our proposed algorithm.
Other methods require a signi�cant amount of learning time be-
cause they cannot update their models incrementally.

6 Conclusion
In this paper, we focused on the summarization of an entire data
stream, discovering the time-evolving causality in data streams,
and forecasting future values incrementally. Our proposed method,
namelyM���P����, exhibits all of the following desirable proper-
ties that we listed in the introduction:

• It is E�ective: It provides the time-evolving causality, namely
insightful time-changing causal relationships in data streams.

• It is Accurate: Our experiments demonstrated that M���P����
precisely discovers the time-evolving causality and forecasts
future values in a streaming fashion.

• It is Scalable: The computational time for our proposed algo-
rithm does not depend on the data stream length.
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Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATED WORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for

Table 2: Symbols and de�nitions.

Symbol De�nition

3 Number of dimensions
C2 Current time point
^ Co-evolving multivariate data stream (semi-in�nite)
^

2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#

⌘ Embedding dimension
g( ·) Observable for time-delay embedding, i.e., 6 : R! R⌘
N Hankel matrix
: Number of modes
� Modes of the system, i.e., � 2 R⌘⇥:
⇤ Eigenvalues of the system, i.e., ⇤ 2 R:⇥:
] Demixing matrix, i.e.,] = [w1, ...,w3 ]> 2 R3⇥3
H Causal adjacency matrix, i.e., H 2 R3⇥3

e (C ) Inherent signal at time point C , i.e., e (C ) = {4 (8 ) (C ) }38=1
Y (C ) Latent vectors at time point C , i.e., Y (C ) = {s (8 ) (C ) }38=1
v (C ) Estimated vector at time point C , i.e., v (C ) = {E(8 ) (C ) }38=1
D Self-dynamics factor set, i.e., D = {�,⇤}
) Regime parameter set, i.e., ) = {] , D(1) , ..., D(3 ) }
' Number of regimes
⇥ Regime set, i.e., ⇥ = {) 1, ..., )' }
B Time-evolving causality, i.e., B = {H1, ...,H' }
⌦ Update parameter set, i.e., ⌦ = {81, ...,8' }
F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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Stream Processing - - - 3 - 3

Forecasting 3 - - 3 3 3

Data Compression - 3 - 3 - 3

Interdependency - 3 3 - - 3

Time-evolving Causality - - - - - 3

;B -steps-ahead future values. Figure 1 (c) shows snapshots of
the ;B = 10-steps-ahead future forecasting when given a current
window. The blue vertical axes show the beginning of a current
window C< and the current time point C2 , and the red vertical axis
shows the ;B -step-ahead time point C2 + ;B . In addition, we show our
estimated values with bold-colored lines (the originals are shown in
gray).M���P���� successfully �nds the current distinct dynamical
pattern and generates future values continuously at any time.

1.2 Contributions
In this paper, we proposeM���P����, which has all of the following
desirable properties:
• E�ective: it discovers time-changing relationships between ob-
servations (i.e., time-evolving causality) based on monitoring
transitions of distinct dynamical patterns (i.e., regimes).

• Accurate: it theoretically discovers the time-evolving causality
in data streams (please see Lemma 2 for details), and accurately
forecast future values based on these relationships.

• Scalable: it is fast and requires only constant computational time
with regard to the entire stream length.

2 RELATED WORK
In this section, we brie�y describe investigations related to our
work. Table 1 summarizes the relative advantages of M���P����
with regard to �ve aspects.
Time seriesmodeling and forecasting.Time seriesmodeling and
forecasting is an important area that has attracted huge interest in
many �elds. Autoregressive integratedmoving average (ARIMA) [7]
and Kalman �lters (KF) [15] are representative examples of tradi-
tional modeling and forecastingmethods, and there have beenmany
studies of their derivatives [14, 33, 43, 49]. TICC [24] characterizes
the interdependence between di�erent observations based on a
Markov random �eld but cannot capture the causal relationships. In
particular, streaming algorithms have become more critical in terms
of processing a substantial amount of data under time/memory lim-
itations, and they have proved highly signi�cant to the data mining
and database community [5, 23, 29, 36]. OrbitMap [37] is the latest
general method focusing on stream forecasting, and it can �nd the
transitions between major dynamic time series patterns. However,
it cannot discover the time-evolving causality between observa-
tions. Research on deep learning models for forecasting has been
very active in recent years [41, 47, 59, 62]. TimesNet [56] is a TCN-
based method that transforms a 1D time series into 2D space based
on multiple periods and captures complex temporal variations for

Table 2: Symbols and de�nitions.

Symbol De�nition

3 Number of dimensions
C2 Current time point
^ Co-evolving multivariate data stream (semi-in�nite)
^

2 Current window, i.e., ^2 = ^ [C< : C2 ] 2 R3⇥#

⌘ Embedding dimension
g( ·) Observable for time-delay embedding, i.e., 6 : R! R⌘
N Hankel matrix
: Number of modes
� Modes of the system, i.e., � 2 R⌘⇥:
⇤ Eigenvalues of the system, i.e., ⇤ 2 R:⇥:
] Demixing matrix, i.e.,] = [w1, ...,w3 ]> 2 R3⇥3
H Causal adjacency matrix, i.e., H 2 R3⇥3

e (C ) Inherent signal at time point C , i.e., e (C ) = {4 (8 ) (C ) }38=1
Y (C ) Latent vectors at time point C , i.e., Y (C ) = {s (8 ) (C ) }38=1
v (C ) Estimated vector at time point C , i.e., v (C ) = {E(8 ) (C ) }38=1
D Self-dynamics factor set, i.e., D = {�,⇤}
) Regime parameter set, i.e., ) = {] , D(1) , ..., D(3 ) }
' Number of regimes
⇥ Regime set, i.e., ⇥ = {) 1, ..., )' }
B Time-evolving causality, i.e., B = {H1, ...,H' }
⌦ Update parameter set, i.e., ⌦ = {81, ...,8' }
F Full parameter set, i.e., F = {⇥,⌦}

forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that
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their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
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typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.
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In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
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forecasting. Although deep learning-based methods are compelling,
their applicability to forecasting in a streaming fashion is limited
due to the prohibitively high computational costs associated with
time series analysis, which hinders continuous model updating
with the most recent observations.
Causal inference/discovery. Over decades, a wide range of stud-
ies have been conducted on causal inference/discovery [19, 26, 27,
34, 50] and addressing challenges based on the concept of causal-
ity [12, 46, 55]. NOTEARS [60] is a new di�erentiable optimization
framework with an acyclic regularization term, serving as an equiv-
alent to a combinatorial constraint. Granger causality [21] has been
widely used to analyze temporal causal relationships. Speci�cally,
typical causality represents whether one observation causes an-
other, while Granger causality represents whether one observation
forecasts another [22]. In this paper, we focus on the cause-and-
e�ect relationships that evolve over time in a data stream. We try to
discover them based on the structural equation model [44], which
is one of the most general formulations of causality.

Consequently, none of these methods speci�cally focused on
the discovery of the time-evolving causality and forecasting future
values in a streaming fashion, simultaneously.

3 PROPOSED MODEL
In this section, we present our proposed model. The symbols we use
in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
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in this paper are described in Table 2. Here, before introducing the
main topic, we brie�y describe the principles and concepts of M����
P����. We design our proposed model based on the structural equa-
tionmodel (SEM) [44], which is written as^sem = Hsem^sem+Ksem,
where ^sem is the observed variables, Hsem is the causal adjacency
matrix, and Ksem is a set of mutually independent exogenous vari-
ables with a non-Gaussian distribution. Note that we assume that

主要５カ国における
 COVID-19 の感染者数
 で構成される

南アフリカ保健省が 
 最新の変異株 501.V2   

 の発⾒を発表

上海における過去最
 ⼤のロックダウン

各⽮印の基部は原因 
 を先端は結果を意味
 している

時系列パターンの遷
 移を考慮した⾼精度 
 な将来予測を達成

固有信号が従う動的  
 システムの動的特性 
 を⽰す


