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A B S T R A C T

This paper tackles the problem of effectively detecting variable celestial objects whose brightness periodically
changes over time. This problem is crucial in studying the evolution and structure of the universe and
elucidating physical phenomena. The method by Sesar et al. is one of the popular approaches used in detecting
variable celestial objects that uses statistical data of celestial time series, such as intrinsic variability 𝜎 and 𝜒2,
etc. However, since statistical data is an aggregation of celestial time series, the previous approaches do not
take advantage of the periodicity, which is the inherent characteristic of variable celestial objects; it fails to find
variable celestial objects effectively. To solve such a problem, we propose an approach to detecting variable
celestial objects using periodic analysis. Our approach uses sparse modeling as periodic analysis since celestial
time series is typically sparse and sparse modeling can effectively obtain periodicities of the celestial objects
from sparse time series. By exploiting the periodicities of the celestial objects as features, we perform binary
classification to estimate whether a celestial object is a variable celestial object. To show the effectiveness of
our approach, we evaluated our approach using Hyper SuprimeCam (HSC) PDR2 dataset, and we confirmed
that AUC of our approach is 0.939 while AUC of the previous approach is 0.750; our approach can more
effectively detect variable celestial objects.
. Introduction

Variable celestial objects refer to objects in the sky whose brightness
hanges over time. They are revealed to account for approximately
everal percent of the total celestial objects detected in the sky sur-
eys (Sesar et al., 2009; Bhatti et al., 2010), although the fraction
s dependent on the survey depth and observation wavelength (fil-
ers). Their representative examples are flare stars, novae, supernovae,
eriodically variable stars such as Cepheids, RR Lyrae stars, and so
n, and also active galactic nuclei(AGN), etc. The way of variation
n their brightness on variable objects is a vital and significant phe-
omenon in revealing the structure and evolution of the universe.
pecifically, investigating variable celestial objects allows us to probe
ataclysmic and catastrophic events and mass accretion by massive
lack holes (Gosnell et al., 2022; Yan-Ke et al., 2022; Eyer and Blake,
005; Ofek et al., 2020). In addition, the period of periodically variable
bjects can provide some important information, such as distance to
he objects (Sesar et al., 2009; Braga et al., 2021; Liu et al., 2022) for
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probing the structure of our galaxy, for identifying the faint and small
nearby galaxies (Vivas et al., 2022) and radii and mass of eclipsing
M dwarf systems followed by spectroscopic radial velocity measure-
ments (Becker et al., 2011). So, many astronomical researchers search
for new variable celestial objects and investigate their characteristics.
On the other hand, the importance of effective detections of variable
objects is increasing, as many wide field imaging surveys with large
telescopes did and will produce huge datasets including numerous
variable objects, and fast and accurate selections of variable objects are
essential for making dramatic progress in the knowledge of the active
universe.

A statistics-based detection is a major approach for detecting vari-
able celestial objects. For example, the method by Sesar et al. (2007)
identifies variable celestial objects using statistics, such as intrinsic
variability 𝜎, 𝜒2, etc. However, since such low-order statistics are
aggregations of astronomical time series, this method fails to take
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𝐸

Symbols and definitions

Periodic analysis

𝑛 Length of astronomical time series
𝑚 Number of component frequencies
𝑁 Number of astronomical time series
𝑓nyq Nyquist frequency
𝑋 Explanatory variables 𝑋 ∈ 𝑅𝑛 × 2𝑚

𝒚 Target variables 𝒚 ∈ 𝑅𝑛

 Astronomical time series dataset  =
{𝒚𝟏,… , 𝒚𝑵}

𝒘 Regression coefficient 𝒘 ∈ 𝑅2𝑚

𝝂 Frequency candidates 𝝂 ∈ 𝑅𝑚

Group Lasso

𝐽 Number of group
𝑔𝑗 Number of variables of 𝑗th group

(1 ≤ 𝑗 ≤ 𝐽 )
𝑮𝒋 Indices of 𝑗th group 𝑮𝒋 ∈ 𝑅𝑔𝑗

 Group set  = {𝑮𝟏,… ,𝑮𝑱 }

Binary classification

𝑝 Periodic feature 𝑑 ∈ 𝑅𝑁 × (𝑚+1)

𝑑 Domain feature 𝑑 ∈ 𝑅𝑁 × 4

 Feature list  ∈ 𝑅𝑁 × (𝑚+5)

 List of variable celestial objects

advantage of the periodic pattern, which is the inherent nature of
variable celestial objects. In this paper, we utilize the periodic pattern
to identify periodically variable objects. A typical method for extracting
the periodic pattern is the Fourier transform. This method needs to
impute missing values in the astronomical time series for each celestial
object to extract the periodic pattern. However, the ratio of missing
values in astronomical time series (e.g. HSC PDR2) is quite high (Aihara
et al., 2019) (See Fig. 1). Therefore, this method does not work well
for the astronomical time series. We tackle this problem by leveraging
a sparse modeling technique, which is a machine learning-based ap-
proach robust against missing values. This technique can train robust
models by extracting relevant variables from sparse time series. In
addition, we design input features of binary classification to accurately
estimate whether a celestial object is a variable celestial object by
investigating the nature of variable celestial objects. In order to process
large-scale astronomical time series efficiently, we employ distributed
processing for the sparse modeling technique. In short, we summarize
the key contributions of this work as follows:

Effective: The proposed method effectively detects variable celes-
tial objects by extracting their representative periodic pattern,
which is their inherent characteristic. It can automatically ex-
tract representative periodic patterns by leveraging sparse mod-
eling.

obustness: Astronomical time series have a large number of missing
values, and they are so sparse due to the observation environ-
ment. Our method for analyzing such series exhibits robustness
against sparse astronomical time series by leveraging sparse
modeling to mitigate overfitting.

Scalability: The proposed method independently processes each celes-
tial object. Therefore, it is capable of high-speed processing for
2

millions of celestial objects by employing distributed processing.
Fig. 1. An example of an astronomical time series such that the magnitudes of variable
celestial objects periodically changes over time. The x-axis denotes time, while the y-
axis denotes standardized magnitude. Astronomical time series in the HSC PDR2 dataset
are extremely sparse.

2. Preliminary

We describe sparse modeling techniques. They can extract relevant
variables for representing high-dimensional data like astronomical time
series, eliminating redundant variables that potentially cause overfit-
ting. In particular, we introduce Lasso regression and its variant, Group
Lasso regression as follows.

𝐋𝐚𝐬𝐬𝐨 (Tibshirani, 1996): it is a linear regression model that has
ecome a popular feature selection and shrinkage estimation method.
he loss function of the Lasso estimator 𝐸𝐿 is defined as

𝐿 = 1
2𝑛

‖𝒚 −𝑋𝒘‖

2
2 + 𝜆‖𝒘‖1 (1)

In this equation, 𝑋 ∈ 𝑅𝑛×𝑚 is explanatory variables, where 𝑛 is the
length of astronomical time series and 𝑚 is the number of component
frequencies, 𝒚 ∈ 𝑅𝑛 is target variables, 𝒘 ∈ 𝑅𝑚 is regression coefficient,
and ‖𝒘‖1 ≡

∑

𝑖 |𝑤𝑖|. According to the penalty parameter, 𝜆, several
coefficients of 𝐰 are set exactly to zero; coefficients becoming zero
have no involvement in the model. Moreover, continuous shrinkage can
improve the model accuracy due to the bias–variance trade-off (Li et al.,
2011). Such a process of removing irrelevant or redundant variables
is commonly referred to as feature selection. The success of feature
selection depends on 𝓁1 penalty, which is the second term in (1)
feature selection reduces the model’s complexity in the astronomical
time series; it mitigates overfitting.

𝐆𝐫𝐨𝐮𝐩 𝐋𝐚𝐬𝐬𝐨 (Yuan and Lin, 2006): The Group Lasso is an extension
of the Lasso regression, which performs the feature selection on prede-
fined groups of variables in linear regression models. The loss function
of the Group Lasso estimator 𝐸𝐺𝐿 is defined as

𝐸𝐺𝐿 = 1
2𝑛

‖𝒚 −𝑋𝒘‖

2
2 + 𝜆

∑

𝑮𝒋∈
‖𝒘𝑮𝒋

‖2 (2)

In this equation,  = {𝑮𝟏,… ,𝑮𝑱 } is the group set representing
how 𝑚 variables are divided into 𝐽 groups where 𝑮𝒋 is the index set
belonging to the 𝑗th group of variables. The penalty in the second
term of (2) can be viewed as an intermediate between the 𝓁1 and
𝓁2 penalty. Therefore, it performs feature selection at the group level
and is invariant under group-wise orthogonal transformations like ridge
regression (Hoerl and Kennard, 1970). Note that when 𝜆 = 0, the above
equation is identical to linear regression.

3. Proposed method

We describe the technical challenges and our approach to detecting
variable celestial objects.

3.1. Technical challenges and problem formulation

There are two technical challenges in detecting variable celestial
objects using astronomical time series. The first challenge is that the
astronomical time series have an extremely large number of missing
values (See Fig. 1 as an example). This prevents applying standard
time series analysis, such as Fourier transformation. This is because
the standard time series analysis does not work with any missing

values, and we need to use data imputation for them. However, data



Astronomy and Computing 45 (2023) 100765N. Chihara et al.

O

3

1
u

r
o
i
s
r

imputation does not work well because the amount of missing values in
astronomical time series is overwhelming. To overcome this problem,
we utilize sparse modeling techniques that can train robust models by
extracting relevant variables from sparse time series. In detail, we first
extract representative periodic patterns (frequencies) from astronom-
ical time series datasets by sparse modeling and then detect variable
celestial objects using the extracted frequencies. In order to detect
variable celestial objects, we utilize the representative frequencies and
the quality (score) of the frequency extraction. The second challenge is
how we can design input features of binary classification for effectively
detecting variable celestial objects. In addition to utilizing the repre-
sentative frequencies, we carefully design additional input features by
investigating the nature of celestial objects. For example, we use the
celestial object’s magnitude as the additional feature. We easily obtain
periodic patterns from bright celestial objects, on the contrary, it is
difficult to obtain them from dark ones. So, if we take advantage of the
magnitude of celestial objects as one of the input features, the accuracy
of binary classification expects to be higher.

Based on the two challenges mentioned above, we formulate the
problem of detecting variable celestial objects using time series datasets
as follows:

 = 𝐹 ( , 𝑚, 𝑓nyq,𝑑 ) (3)

where 𝐹 is a function that detects variable celestial objects  from the
astronomical time series dataset  = {𝒚𝟏,… , 𝒚𝑵} (𝒚𝒊 is a astronomical
time series and 𝑁 is the number of astronomical time series) for the
given number of component frequencies 𝑚, nyquist frequency 𝑓nyq, and
domain feature 𝑑 . Astronomical time series 𝒚𝒊 is the time sequence
of magnitude data points for each celestial object. The component fre-
quencies are (𝑓nyq∕𝑚, 2𝑓nyq∕𝑚,… , 𝑓nyq). Periodic feature 𝑝 is obtained
by transforming each time series 𝒚𝒊 into 𝑚 components frequencies,
which are calculated by nyquist frequency 𝑓nyq (Section 3.2), and
Domain feature 𝑑 represents the specialized natures of each celestial
object (Section 3.3). We describe the details of those features in the
following sections.

3.2. Periodic feature

We employ sparse modeling to extract periodic feature 𝑝 in order
to take advantage of the inherent characteristic of variable celestial
objects.

3.2.1. Variables design
In order to extract representative frequencies from sparse time series

datasets, we first design explanatory variables 𝑋 ∈ 𝑅𝑛×𝑚 in Eq. (2)
by leveraging trigonometric interpolation (Makarchuk et al., 2022).
Trigonometric interpolation is an interpolation method in mathematics
using trigonometric polynomials, which is a finite linear combination
of sine and cosine terms. Since those terms are periodic, this method
is suited for the interpolation of time series. Also, note that sine and
cosine terms with the same frequency in trigonometric polynomials are
inseparably related.

In detail, by leveraging the trigonometric interpolation, we estimate
the regression curve using the following polynomials from astronomical
time series 𝒚𝒊 with unevenly spaced astronomical time series due to
missing values:

𝒚𝒊(𝑡) =
∑

𝑗
𝑤𝑗 cos(2𝜋𝑡𝜈𝑗 ) +𝑤𝑚+𝑗 sin(2𝜋𝑡𝜈𝑗 ) (4)

In this equation, 𝜈𝑗 = 𝑗𝑓nyq∕𝑚 is a component frequency where 𝑓nyq
nyquist frequency, which is the maximum component frequency, and
𝑤𝑗 is their amplitudes. The amplitudes 𝑤𝑗 and 𝑤𝑚+𝑗 are fit by a linear
model, and they are composed into 𝑤̃𝑗 as follows:

𝒚𝒊(𝑡) =
∑

𝑤̃𝑗 sin(2𝜋𝑡𝜈𝑗 + 𝛼𝑗 ) (5)
3

𝑗

Algorithm 1 Periodic Analysis
Input: i) explanatory variables: 𝑋

ii) target variables: 𝒚
iii) group set: 

utput: i) regression coefficient: 𝒘̃
ii) coefficient of determination: reg_score

1: // Group Lasso
2: 𝒘 = 𝟎 // initialization
3: while 𝒘 is not converged do
4: 𝒘̂ ← 𝒘 − 𝜂∇𝑓 (𝒘) // ∇𝑓 (𝒘) = 𝑋⊤(𝑋𝒘 − 𝒚)∕𝑛
5: for 𝑮𝒋 to  do
6: 𝒘𝑮𝒋

← max(0, 1 − 𝜂𝜆∕||𝒘̂𝑮𝒋
||)𝒘̂𝑮𝒋

7: end for
8: end while
9: reg_score = ||𝑋𝒘 − 𝒚||2∕||𝒚 − 𝒚||2

10: 𝒘̃ = [
√

𝑤1
2 +𝑤𝑚+1

2, ...,
√

𝑤𝑚
2 +𝑤2𝑚

2]
11: return 𝒘̃, reg_score

where 𝑤̃𝑗 =
√

𝑤2
𝑗 +𝑤2

𝑚+𝑗 , and 𝛼𝑗 = arctan(𝑤𝑗∕𝑤𝑚+𝑗 ).
In our approach, we set explanatory variables 𝑋 ∈ 𝑅𝑛×2𝑚 in Eq. (2)

with 𝑚 sine and 𝑚 cosine terms (component frequencies) as follows:

𝑥𝑖𝑗 =

{

cos(2𝜋𝑡𝑙𝜈𝑗 ) (𝑗 ≤ 𝑚)

sin(2𝜋𝑡𝑙𝜈𝑗 ) (𝑗 > 𝑚)
(6)

In order to ensure the inseparable relationship between sine and
cosine terms with the same frequency in trigonometric polynomials,
we employ Group Lasso as a sparse modeling technique to impose
the inseparable relationship between explanatory variables and extract
relevant explanatory variables from sparse time series. Specifically, we
define group set 1= {{1, 𝑚+1}, {2, 𝑚+2},… , {𝑚, 2𝑚}} in Eq. (2), which
groups sine and cosine terms with the same frequency.

3.2.2. Periodic feature
In this section, we describe the periodic feature 𝑝 using the results

of Group Lasso. 𝑝 is composed of regression coefficients 𝒘̃ and the
coefficient of determination of regression reg_score, and it is used as
input features of variable celestial object detection. The nature and
rationale behind adopting these values are described below:

𝒘̃ = (𝑤̃1,… , 𝑤̃𝑚)

This vector is the coefficients of component frequencies. Each
coefficient represents the importance of the corresponding fre-
quency.

reg_score
This value is the coefficient of determination (𝑅2), a statistical
measure of how accurately the input series is modeled by 𝒘̃. We
use this value as an input feature since if the accuracy of 𝒘̃ is
high, we can effectively detect variable celestial objects.

.2.3. Algorithm
The pseudo-code of the periodic analysis is shown in Algorithm

. In line 2, we initialize 𝒘 with a zero vector. In lines 3–8, we
pdate 𝒘 according to the update formula of Group Lasso. In detail,

∇𝑓 (𝒘) in line 4 indicates the direction of decreasing loss. In line 6, if
‖𝒘̂𝑮𝒋

‖ > 𝜂𝜆 holds, 𝒘𝑮𝒋
is a significant feature group for modeling. We

epeat the above update until convergence and calculate the coefficient
f determination reg_score of 𝒘. In line 10, in accordance with the
nseparable relationship between the sine and cosine terms with the
ame frequencies, 𝒘 is transformed into 𝒘̃ using Eq. (5). Finally, 𝑝 is
eturned as a pair of 𝒘̃ and reg_score.

1 {𝑗, 𝑚 + 𝑗} ∈  corresponds to the group of {cos(2𝜋𝑡 𝜈 ), sin(2𝜋𝑡 𝜈 )}.
𝑖 𝑗 𝑖 𝑗
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3.3. Domain feature

In addition to utilizing the periodic feature 𝑝, we carefully design
an additional periodic feature 𝑑 for improving the accuracy of variable
celestial object detection. Specifically, 𝑑 is composed of the average
m_ap40, z_apertureflux_40_mag, diff_ap40 and data_size (Aihara et al.,
2019). The nature and rationale behind adopting these values are
described below:

average m_ap40

This average value is the mean of m_ap40. Each data point of
m_ap40 is the brightness (in magnitude) obtained within the
circle of a 4-arcsecond diameter centered on the target celestial
object in each exposure. The m_ap40 is the target variable in the
periodic analysis of the proposed model (the red data points in
Fig. 1). Note that m_ap40 may be affected by neighbor objects
when the neighbor objects are bright and close to the target
object as the measurements are performed on the image without
deblending.

z_apertureflux_40_mag

This value is the sum of flux density obtained from the circle
with a 4-arcsecond diameter centered on the target celestial
object in a Coadd image2: Coadd image is generated by combining
all CCD images of the celestial object. Since Coadd image has
a higher signal-to-noise ratio and can avoid the effects caused
by noises in each exposure images, z_apertureflux_40_mag is ex-
pected to be closer to the actual brightness of celestial objects
than average m_ap40.

diff_ap40

This value is computed as the difference between average m_ap40
and z_apertureflux_40_mag. Since z_apertureflux_40_mag is
expected to have higher accuracy than average m_ap40, it rep-
resents the noise affecting rate of average m_ap40. Therefore,
diff_ap40 is useful in the detection of variable celestial objects.

data_size

This value is the number of observations. Although we attempt
to mitigate overfitting by utilizing sparse modeling, overfitting is
inevitable when data_size is small. So, this value can be utilized
as the overfitting ratio.

Fig. 2 depicts the relationship between diff_ap40 and average m_ap40.
We can observe that celestial objects of low brightness have large
diff_ap40. That means that the fainter celestial objects are more suscep-
tible to noise by neighbor objects. Therefore, diff_ap40 can be used as an
effective domain feature expressing the accuracy degree of the periodic
analysis result (both features computed from m_ap40). We achieve more
accurate classification by utilizing not only the periodic pattern but also
this insight.

3.4. Detection of variable celestial objects

We utilize two feature lists, 𝑝 and 𝑑 introduced in the previous
sections, for the problem of detecting variable celestial objects (See
Fig. 3 for details). We solve this problem by binary classification, either
objclass is 0 (non-variable celestial objects) or 1 (variable celestial
objects). We adopt LightGBM (Ke et al., 2017) to solve this task, which
achieves state-of-the-art performances in many machine-learning tasks.
However, the proposed method can adopt other binary classification
approaches such as XGBoost (Chen and Guestrin, 2016).

2 The resultant image made by statistically coadding each exposure images.
4

Fig. 2. The relationship between diff_ap40 and average m_ap40: Note that diff_ap40
corresponds to noise. This figure shows that almost all noisy celestial objects with
large values of diff_ap40 are relatively dark.

Algorithm 2 Detection of Variable Celestial Objects
Input: i) time series dataset of celestial objects: 

ii) number of component frequencies: 𝑚
iii) nyquist frequency: 𝑓nyq
iv) domain feature: 𝑑

Output: list of variable celestial object candidates: 
1: // setting the variables
2: for 𝑖 = 1 to 𝑛 do
3: for 𝑗 = 1 to 𝑚 do
4: // 𝑡𝑖 = 𝑖, 𝜈𝑗 = 𝑗

𝑓nyq
𝑚

5: 𝑋[𝑖][𝑗] ← cos(2𝜋𝑡𝑖𝜈𝑗 )
6: 𝑋[𝑖][𝑗 + 𝑚] ← sin(2𝜋𝑡𝑖𝜈𝑗 )
7: end for
8: end for
9: for 𝑗 = 1 to 𝑚 do

10: [𝑗] ← [𝑗, 𝑗 + 𝑚]
11: end for
12: // Periodic analysis
13: for 𝑖 = 1 to 𝑁 do
14: 𝑝 ← Algorithm1(𝑋,[𝑖],)
15:  [𝑖] ← [𝑝,𝑑 [𝑖]]
16: end for
17: // binary classification
18:  → 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡
19: lgb = LightGBM.train(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)
20:  = lgb.predict(𝑋𝑡𝑒𝑠𝑡)
21: return 

3.4.1. Algorithm
The pseudo-code of the overall proposed method is shown in Algo-

rithm 2. In lines 2–11, we prepare the required variables. Specifically,
we prepare explanatory variables 𝑋 in lines 2–8, and the group set 
in lines 9–11. In lines 13–16, we conduct periodic analysis(Algorithm
1) and prepare feature 𝑝 using the results of the periodic analysis.
Finally, in lines 18–20, we execute binary classification as described in
this section.

3.5. Distributed processing

We leverage distributed servers for detecting variable celestial ob-
jects from large-scale datasets. We utilize distributed database Hive
for storing the data points of celestial objects, and Apache Spark
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Fig. 3. Proposed method architecture: Periodic feature 𝑝 is obtained by periodic analysis. Detection of variable celestial objects (blue block) detects variable celestial objects by
utilizing both periodic feature 𝑝 and additional domain feature 𝑑 .
distributed processing framework. Since Python is the most popular
programming language for implementing machine learning techniques,
we utilize SynapseML3 that supports Python language for scalable
machine learning pipelines on Apache Spark. In particular, we use the
LightGBM implementation in SynapseML for detecting variable celestial
objects and PySpark (Python API for Apache Spark)4 for the periodic
analysis.

4. Experiments

In this section, we evaluate the effectiveness of our proposed
method. The questions we want to answer are as follows:

Q1 (effectiveness): How much more effective is the proposed method
than a typical existing method, Sesar et al. (2007)? (Section 4.3)

Q2 (robustness): Is the periodic analysis in the proposed method
robust against sparse astronomical time series? (Section 4.4)

Q3 (scalability): Does the proposed model scale well to dataset size?
(Section 4.5)

Q4 (ablation study): Do both the sparse modeling and domain knowl-
edge contribute to the model accuracy? (Section 4.6)

4.1. Experimental setup

We used the z band photometric catalog data for each exposure in
the HSC PDR25 (Aihara et al., 2019), which are produced by forced
photometry of each CCD images in the pipeline (Bosch et al., 2018),
on the sky area of tract 9813. This dataset is composed of a celestial
object identifier objectid, observation time mjd, magnitude m_ap40 and
z_apertureflux_40_mag, class label objclass (0 for non-variable and 1 for
variable). We prepared the 5478 astronomical time series by sorting
variable celestial objects based on the low-order statistics. The total
data points are 393,534 (71.84 data points for each object on average).
Furthermore, we manually assigned the class label objectid to the top
1557 astronomical time series in them sorted based on the statistics. As
a result, 26.1% of 1557 astronomical time series are labeled as variable
celestial objects, and all the rest (73.9%) are labeled as non-variable
celestial objects. We refer to ‘‘26.1%’’ as a variable ratio. For our
proposed model, we set the number of component frequencies 𝑚 = 500,
nyquist frequency 𝑓nyq = 1∕30 000, penalty parameter 𝜆 = 0.1, and
learning rate 𝜂 = 0.01. We adopt this nyquist frequency for detecting
variable celestial objects whose periodic length is between half a day
and a few months.

3 URL https://github.com/microsoft/SynapseML.
4 URL https://spark.apache.org/docs/latest/api/python.
5 https://hsc-release.mtk.nao.ac.jp/doc/.
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Table 1
Evaluation metrics (AUC, accuracy, precision, recall, F1, MCC, Balanced Accuracy(BA))
scores of detection of variable celestial objects on PDR2.

Model AUC Acc. Prec. Rec. F1 MCC BA

Sesar et al. 0.750 0.743 0.507 0.507 0.507 0.334 0.667
Ours 0.940 0.900 0.825 0.779 0.800 0.735 0.861

4.2. Evaluation method

We used the method by Sesar et al. as the baseline, which identified
variable objects using intrinsic variability 𝜎, 𝜒2, etc. We choose this
method because it is a popular method to detect variable celestial
objects used by the National Astronomical Observatory of Japan. We
utilized k-fold cross-validation to evaluate models. However, since this
method is based on unsupervised learning, it cannot perform a label
prediction in the same way as the proposed method, which is based
on supervised learning. Therefore, in the baseline, we assumed that
the ratio of variable celestial objects in the test dataset corresponds
to the variable ratio in each fold. Specifically, in order to make a fair
comparison, the baseline labeled the top 26.1% of the sorted variable
by the statistics as variable celestial objects in each fold.

4.3. Q1. Effectiveness compared to the baseline

We evaluated the quality of the proposed method and the baseline,
the method by Sesar et al. in terms of classification accuracy with
respect to the seven evaluation metrics (AUC, accuracy, precision,
recall, F1, MCC, Balanced Accuracy(BA)). Table 1 shows the proposed
method outperforms the baseline in all metrics. This result indicates
that we can extract the representative periodic patterns from extremely
sparse astronomical time series by the sparse modeling technique and
detect variable celestial objects by leveraging 𝑝 and 𝑑 .

We also compare the proposed method and the baseline using
confusion matrices in Fig. 4, in addition to the precision and recall
we reported in Table 1. The false positive rate and false negative
rate of the proposal method are very low, 0.003 and 0.005, respec-
tively. In contrast, those of the baseline are relatively large, 0.297 and
0.059, respectively. This result also indicates that the proposal method
outperforms the baseline method by Sesar et al.

In addition, we carried out another experiment using a balanced
dataset to further validate the effectiveness of the proposed method.
Specifically, we prepared the balanced dataset by randomly removing
several astronomical time series that are labeled as non-variable ce-
lestial objects. The result shown in Table 2 verifies that the proposed
method is capable of accurately classifying not only the imbalanced
dataset but also the balanced one.

https://github.com/microsoft/SynapseML
https://spark.apache.org/docs/latest/api/python
https://hsc-release.mtk.nao.ac.jp/doc/
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Fig. 4. Evaluation of detection of variable celestial objects on PDR2 using confusion
matrices: The left and right matrices show the results of the proposed method and the
method by Sesar et al. respectively.

Table 2
Evaluation metrics (AUC, accuracy, precision, recall, F1, MCC, Balanced Accuracy(BA))
scores of detection of variable celestial objects on the balanced dataset.

Model AUC Acc. Prec. Rec. F1 MCC BA

Sesar et al. 0.771 0.749 0.749 0.749 0.749 0.498 0.749
Ours 0.931 0.888 0.926 0.842 0.882 0.780 0.888

Fig. 5. Robustness of the proposed method: The x-axis denotes the sampling rate,
namely the ratio of data points usage, while the y-axis denotes the similarity between
the reconstructed series and the raw series. Group Lasso can reconstruct with fewer
data points.

4.4. Q2. Robustness against sparsity

This experiment evaluated the robustness of our periodic analysis
using the sparse modeling technique. If penalty parameter 𝜆 = 0, the
Group Lasso would be equivalent to linear regression. Therefore, we
compared the proposed approach to linear regression in the experi-
ment. Note that linear regression does not perform the feature selection.
We sampled a single astronomical time series in PDR2, objectid is
‘‘43158451320282758’’, which has a lot of data points (175). Fig. 5
shows the quality of the periodic analysis against various sampling
rates. We used Cosine Similarity6 Huang et al. (2008) for the quality
evaluation metric to evaluate the error between the raw astronomical
time series and the one obtained by each method because it is widely
used for high-dimensional datasets. The 𝑥-axis in the figure, ‘‘Sampling
Rate’’, represents the ratio of data points in the astronomical time
series. The result shows that linear regression is susceptible to missing
data; it cannot accurately analyze the astronomical time series even
when the sampling rate is at 0.95. On the other hand, our periodic
analysis is highly robust against low sampling rate, even when the
sampling rate is at 0.3. Since the number of data points in the as-
tronomical time series was 175, we expect that the proposed method
can extract representative periodic patterns from the astronomical time
series, whose number of data points is approximately 50.

6 It measures the similarity in the direction of the two input vectors ignoring
the scale by the cosine of the angle between them.
6

Table 3
Response time vs. input object size.

Input object size 900 1800 2700 3600 4500

Response time (s) 867 907 971 1014 1064

Fig. 6. CPU/disk IO performance profile for Spark cluster.

4.5. Q3. Scalability

We evaluated the scalability both on the periodic analysis step
and the detection step of variable celestial objects using distributed
processing framework (Apache Spark 3.2.0) and distributed database
(Hive 1.1.0) using 66 computers (Ubuntu 16.04.5, Xeon processor Gold
6130 (2.10 GHz, 16core) × 2, memory 1.5 TB). We utilize PySpark
3.2.0 and Python 3.7.8 for the periodic analysis step and the LightGBM
implementation in SynapseML 0.10.2 for detecting variable celestial
objects. Table 3 shows how the response time changes when the
number of input celestial objects increases. The response time is the
summation of both steps of the periodic analysis and the detection of
variable celestial objects. The results are approximated by 𝑦 = 0.0557x
+ 814 using linear regression (correlation coefficient = 0.998), so the
implementation is linearly scalable to the input size of celestial objects.

Fig. 6 depicts the Spark cluster performance of CPU utilization
(%) and disk IO (GB/s) in the Y-axis during the training phase using
labeled objects (left-hand side) and the prediction phase using non-
labeled objects (right-hand side). X-axis indicates the elapsed time. In
the CPU utilization figures (the upper part in Fig. 6), the solid lines
show the average CPU utilization of all computers in the cluster and
the dashed lines show the maximum CPU utilization in the computers.
In the disk IO figures (the lower part in Fig. 6), the blue part shows
the disk write IO and the green part show the disk read IO. Overall,
we observe that (1) the periodic analysis occupies roughly 75% of the
whole performance, (2) the periodic analysis step occupies 100% of the
maximum CPU utilization, so it is the performance bottleneck of the
whole system, and (3) the periodic analysis step also consumes large
disk IO (2.9 GB/s at the maximum)

4.6. Q4. Ablation study

Table 4 shows the impact of the main components used in the
proposed method using several variants of our models: without group-
ing, sparse modeling, periodic features, or domain knowledge features.
Details about each component are described below:

Grouping: We conducted an experiment on a specific variant, namely
w/o. grouping, to validate the effectiveness of the predefined groups of a
group set  in Group Lasso. The w/o. grouping was derived using simple
Lasso for the sparse modeling technique. We can discern from Table 4
that we enhance prediction accuracy at various evaluation metrics,
except for Recall, by leveraging Group Lasso.

Sparse Modeling: We carried out an experiment on a specific variant,
w/o. sparse modeling, in order to evaluate the effectiveness of the sparse
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Table 4
Ablation study results: Averages and errors of evaluation metrics (AUC, accuracy, precision, recall, F1, MCC, Balanced Accuracy(BA)) calculated by prediction of multiple models.
The evaluation method is k-fold validation (k = 10), and this error is based on standard deviation. The blue diamond is the mean value. These graphs indicate that (1) the complete
model is more accurate than the others, (2) sparse modeling techniques and domain knowledge contribute to the accuracy improvement of the proposed model.

Model AUC Accuracy Precision Recall F1 MCC BA

Ours 𝟎.𝟗𝟒𝟎 ± 𝟎.𝟎𝟏𝟓 𝟎.𝟗𝟎𝟎 ± 𝟎.𝟎𝟏𝟐 𝟎.𝟖𝟐𝟓 ± 𝟎.𝟎𝟑𝟔 0.779 ± 0.047 𝟎.𝟖𝟎𝟎 ± 𝟎.𝟎𝟑𝟎 𝟎.𝟕𝟑𝟓 ± 𝟎.𝟎𝟑𝟓 𝟎.𝟖𝟔𝟏 ± 𝟎.𝟎𝟐𝟏
w/o. grouping 0.938 ± 0.020 0.898 ± 0.021 0.815 ± 0.052 𝟎.𝟕𝟖𝟎 ± 𝟎.𝟎𝟕𝟖 0.796 ± 0.057 0.729 ± 0.067 0.859 ± 0.039
w/o. sparse modeling 0.847 ± 0.031 0.821 ± 0.022 0.702 ± 0.063 0.538 ± 0.085 0.606 ± 0.065 0.503 ± 0.069 0.730 ± 0.040
w/o. 𝑑 0.843 ± 0.038 0.812 ± 0.028 0.716 ± 0.053 0.468 ± 0.075 0.563 ± 0.060 0.468 ± 0.062 0.701 ± 0.034
w/o. 𝑝 0.838 ± 0.044 0.821 ± 0.024 0.709 ± 0.069 0.533 ± 0.064 0.606 ± 0.057 0.504 ± 0.066 0.728 ± 0.034
B

B
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E
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H
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modeling technique. As for the w/o. sparse modeling variant, it was
chieved through the application of linear regression for periodic analy-
is. We find out in Table 4 that taking advantage of the sparse modeling
echnique is essential, as it improves the prediction accuracies.

eriodic Feature List 𝑝: We executed an experiment on a variant
dentified as w/o. 𝑝 with regards to the periodic pattern. It detect
ariable celestial objects solely through the exploitation of domain
nowledge. As can be observed in Table 4, removing the domain
nowledge leads to a significant performance drop. The inherent nature
f variable celestial objects is critical for accuracy.

omain Feature List 𝑑 : An experiment was performed on a variant
eferred to as w/o. 𝑑 to assess the application of domain knowledge. It
etected variable celestial objects by leveraging only periodic patterns.
nspection of Table 4 reveals a considerable decrease in performance
hen the periodic patterns were omitted. The specialized natures of
ariable celestial objects are also critical for accuracy.

. Related work

The method by Sesar et al. (2007) is typical for the detection of
ariable celestial objects. It is a statistics-based method and differs
rom the proposed model. Specifically, it evaluates each celestial object
y using some low-order statistics such as intrinsic variability 𝜎, 𝜒2,

average, standard deviation, and skewness of the magnitude of celestial
objects, etc. Among the statistics in this method, intrinsic variability
𝜎 is the most dominant for the detection of variable celestial objects.
Besides this method, there are several statistics-based methods that
calculate statistics to detect variable celestial objects (Eyer et al., 2017;
Shin et al., 2018). However, since the statistics are aggregations of
astronomical time series, these methods fail to take advantage of the
periodic information, which is the inherent nature of variable celestial
objects.

The periodic analysis refers to the mining of periodic patterns.
Namely, it is used to search for recurring patterns in time series. The
Lomb–Scargle periodogram is a well-known algorithm for detecting
periodic patterns in unevenly sampled time series and has been widely
used within the astronomical community (Lomb, 1976; Scargle, 1982;
VanderPlas, 2018). However, one notable issue with the Lomb–Scargle
periodogram is the occurrence of aliasing. Aliasing is a phenomenon
where certain frequencies can be confused with others, which can
potentially complicate the analysis of periodicity.

6. Conclusion

In this paper, we proposed a method that detects variable celestial
objects. Unlike existing methods that identify variable celestial objects
using statistics, we approach detecting variable celestial objects by
leveraging periodic information, which is one of their inherent char-
acteristics. And since missing values in astronomical time series are
too much, we utilize the sparse modeling technique that can train
robust models by extracting relevant variables from sparse time series.
Furthermore, our proposed model can efficiently process large-scale
astronomical time series thanks to distributed processing. Experimen-
tally, our proposed method shows outperforming the baseline in all five
metrics. In addition, ablation study provided to testify the effectiveness
7

of each component in our proposed method.
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